
CHAPTER 16: DISTRIBUTED-SYSTEM STRUCTURES

g Network-Operating Systems

g Distributed-Operating Systems

g Remote Services

g Robustness

g Design Issues

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Network-Operating Systems − users are aware of
multiplicity of machines. Access to resources of
various machines is done explicitly by:

g Remote logging into the appropriate remote
machine.

g Transferring data from remote machines to local
machines, via the File Transfer Protocol (FTP)
mechanism.

Operating System Concepts, Addison-Wesley 1994 16.1 Silberschatz & Galvin 1994

Distributed-Operating Systems − users not aware of
multiplicity of machines. Access to remote
resources similar to access to local resources.

g Data Migration − transfer data by transferring
entire file, or transferring only those portions of
the file necessary for the immediate task.

g Computation Migration − transfer the computa-
tion, rather than the data, across the system.

g Process Migration − execute an entire process, or
parts of it, at different sites.

- Load balancing − distribute processes across
network to even the workload.

- Computation speedup − subprocesses can run
concurrently on different sites.

- Hardware preference − process execution may
require specialized processor.

- Software preference − required software may
be available at only a particular site.

- Data access − run process remotely, rather than
transfer all data locally.

Operating System Concepts, Addison-Wesley 1994 16.2 Silberschatz & Galvin 1994

Remote Services

g Requests for access to a remote file are delivered
to the server. Access requests are translated to
messages for the server, and the server replies are
packed as messages and sent back to the user.

g A common way to achieve this is via the Remote
Procedure Call (RPC) paradigm.

g Messages addressed to an RPC daemon listening
to a port on the remote system contain the name
of a process to run and the parameters to pass to
that process. The process is executed as
requested, and any output is sent back to the
requester in a separate message.

g A port is a number included at the start of a mes-
sage packet. A system can have many ports
within its one network address to differentiate the
network services it supports.

Operating System Concepts, Addison-Wesley 1994 16.3 Silberschatz & Galvin 1994

The RPC scheme requires binding client and server
port.

g Binding information may be predecided, in the
form of fixed port addresses.

- At compile time, an RPC call has a fixed port
number associated with it.

- Once a program is compiled, the server cannot
change the port number of the requested ser-
vice.

g Binding can be done dynamically by a rendez-
vous mechanism.

- Operating system provides a rendezvous dae-
mon on a fixed RPC port.

- Client then sends a message to the rendezvous
daemon requesting the port address of the RPC

it needs to execute.

Operating System Concepts, Addison-Wesley 1994 16.4 Silberschatz & Galvin 1994

g A distributed file system (DFS) can be imple-
mented as a set of RPC daemons and clients.

- The messages are addressed to the DFS port on
a server on which a file operation is to take
place.

- The message contains the disk operation to be
performed (i.e., read, write, rename, delete,
or status).

- The return message contains any data resulting
from that call, which is executed by the DFS

daemon on behalf of the client.

Operating System Concepts, Addison-Wesley 1994 16.5 Silberschatz & Galvin 1994

Threads

g Threads can send and receive messages while
other operations within the task continue asyn-
chronously.

g Pop-up thread − created on ‘‘as needed’’ basis to
respond to new RPC.

- Cheaper to start new thread than to restore
existing one.

- No threads block waiting for new work; no
context has to be saved, or restored.

- Incoming RPCs do not have to be copied to a
buffer within a server thread.

g RPCs to processes on the same machine as the
caller made more lightweight via shared memory
between threads in different processes running on
same machine.

Operating System Concepts, Addison-Wesley 1994 16.6 Silberschatz & Galvin 1994

The DCE thread calls

1. Thread-management:

create, exit, join, detach

2. Synchronization:

mutex_init, mutex_destroy, mutex_lock,
mutex_trylock, mutex_unlock

3. Condition-variable:

cond_init, cond_destroy, cond_wait,
cond_signal, cond_broadcast

4. Scheduling:

setscheduler, getscheduler, setprio,
getprio

5. Kill-thread:

cancel, setcancel

Operating System Concepts, Addison-Wesley 1994 16.7 Silberschatz & Galvin 1994

Robustness

To ensure that the system is robust, we must :

g Detect failures.

- link

- site

g Reconfigure the system so that computation may
continue.

g Recover when a site or a link is repaired.

Operating System Concepts, Addison-Wesley 1994 16.8 Silberschatz & Galvin 1994

Failure Detection − To detect link and site failure,
we use a handshaking procedure.

g At fixed intervals, sites A and B send each other
an I-am-up message. If site A does not receive
this message within a predetermined time period,
it can assume that site B has failed, that the link
between A and B has failed, or that the message
from B has been lost.

g At the time site A sends the Are-you-up? mes-
sage, it specifies a time interval during which it is
willing to wait for the reply from B. If A does not
receive B’s reply message within the time inter-
val, A may conclude that one or more of the fol-
lowing situations has occurred:

1. Site B is down.

2. The direct link (if one exists) from A to B is
down.

3. The alternative path from A to B is down.

4. The message has been lost.

Operating System Concepts, Addison-Wesley 1994 16.9 Silberschatz & Galvin 1994

Reconfiguration − Procedure that allows the system
to reconfigure and to continue its normal mode of
operation.

g If a direct link from A to B has failed, this infor-
mation must be broadcast to every site in the sys-
tem, so that the various routing tables can be
updated accordingly.

g If it is believed that a site has failed (because it
can no longer be reached), then every site in the
system must be so notified, so that they will no
longer attempt to use the services of the failed
site.

Operating System Concepts, Addison-Wesley 1994 16.10 Silberschatz & Galvin 1994

Recovery from Failure − When a failed link or site is
repaired, it must be integrated into the system grace-
fully and smoothly.

g Suppose that a link between A and B has failed.
When it is repaired, both A and B must be
notified. We can accomplish this notification by
continuously repeating the handshaking pro-
cedure.

g Suppose that site B has failed. When it recovers,
it must notify all other sites that it is up again.
Site B then may have to receive from the other
sites various information to update its local tables.

Operating System Concepts, Addison-Wesley 1994 16.11 Silberschatz & Galvin 1994

Design Issues

g Transparency and locality − distributed system
should look like conventional, centralized system
and not distinguish between local and remote
resources.

g User mobility − brings user’s environment (i.e.,
home directory) to wherever the user logs in.

g Fault tolerance − system should continue func-
tioning, perhaps in a degraded form, when faced
with various types of failures.

g Scalability − system should adapt to increased
service load.

g Large-scale systems − service demand from any
system component should be bounded by a con-
stant that is independent of the number of nodes.

g Process structure of the server − servers should
operate efficiently in peak periods; use of light-
weight processes or threads.

Operating System Concepts, Addison-Wesley 1994 16.12 Silberschatz & Galvin 1994

CHAPTER 17: DISTRIBUTED-FILE SYSTEMS

g Background

g Naming and Transparency

g Remote File Access

g Stateful versus Stateless Service

g File Replication

g Example Systems

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Background

g Distributed file system (DFS) − a distributed
implementation of the classical time-sharing
model of a file system, where multiple users share
files and storage resources.

g A DFS manages sets of dispersed storage devices.

g Overall storage space managed by a DFS is com-
posed of different, remotely located, smaller
storage spaces.

g There is usually a correspondence between con-
stituent storage spaces and sets of files.

Operating System Concepts, Addison-Wesley 1994 17.1 Silberschatz & Galvin 1994

DFS Structure

g Service − software entity running on one or more
machines and providing a particular type of func-
tion to a priori unknown clients.

g Server − service software running on a single
machine.

g Client − process that can invoke a service using a
set of operations that forms its client interface.

g A client interface for a file service is formed by a
set of primitive file operations (create, delete,
read, write).

g Client interface of a DFS should be transparent,
i.e., not distinguish between local and remote
files.

Operating System Concepts, Addison-Wesley 1994 17.2 Silberschatz & Galvin 1994

Naming and Transparency

g Naming − mapping between logical and physical
objects.

g Multilevel mapping − abstraction of a file that
hides the details of how and where on the disk the
file is actually stored.

g A transparent DFS hides the location where in the
network the file is stored.

g For a file being replicated in several sites, the
mapping returns a set of the locations of this file’s
replicas; both the existence of multiple copies and
their location are hidden.

Operating System Concepts, Addison-Wesley 1994 17.3 Silberschatz & Galvin 1994

Naming Structures

g Location transparency − file name does not
reveal the file’s physical storage location.

- File name still denotes a specific, although hid-
den, set of physical disk blocks.

- Convenient way to share data.

- Can expose correspondence between com-
ponent units and machines.

g Location independence − file name does not
need to be changed when the file’s physical
storage location changes.

- Better file abstraction.

- Promotes sharing the storage space itself.

- Separates the naming hierarchy from the
storage-devices hierarchy.

Operating System Concepts, Addison-Wesley 1994 17.4 Silberschatz & Galvin 1994

Naming Schemes − three main approaches

g Files named by combination of their host name
and local name; guarantees a unique systemwide
name.

g Attach remote directories to local directories, giv-
ing the appearance of a coherent directory tree;
only previously mounted remote directories can
be accessed transparently.

g Total integration of the component file systems.

- A single global name structure spans all the
files in the system.

- If a server is unavailable; some arbitrary set of
directories on different machines also becomes
unavailable.

Operating System Concepts, Addison-Wesley 1994 17.5 Silberschatz & Galvin 1994

Remote File Access

g Reduce network traffic by retaining recently
accessed disk blocks in a cache, so that repeated
accesses to the same information can be handled
locally.

- If needed data not already cached, a copy of
data is brought from the server to the user.

- Accesses are performed on the cached copy.

- Files identified with one master copy residing
at the server machine, but copies of (parts of)
the file are scattered in different caches.

g Cache-consistency problem − keeping the cached
copies consistent with the master file.

Operating System Concepts, Addison-Wesley 1994 17.6 Silberschatz & Galvin 1994

Location − Disk Caches vs. Main Memory Cache

g Advantages of disk caches

- More reliable.

- Cached data kept on disk are still there during
recovery and don’t need to be fetched again.

g Advantages of main-memory caches:

- Permit workstations to be diskless.

- Data can be accessed more quickly.

- Performance speedup in bigger memories.

- Server caches (used to speed up disk I/O) are in
main memory regardless of where user caches
are located; using main-memory caches on the
user machine permits a single caching mechan-
ism for servers and users.

Operating System Concepts, Addison-Wesley 1994 17.7 Silberschatz & Galvin 1994

Cache Update Policy

g Write-through − write data through to disk as
soon as they are placed on any cache. Reliable,
but poor performance.

g Delayed-write − modifications written to the
cache and then written through to the server later.
Write accesses complete quickly; some data may
be overwritten before they are written back, and
so need never be written at all.

- Poor reliability; unwritten data will be lost
whenever a user machine crashes.

- Variation − scan cache at regular intervals and
flush blocks that have been modified since the
last scan.

- Variation − write-on-close, writes data back to
the server when the file is closed. Best for files
that are open for long periods and frequently
modified.

Operating System Concepts, Addison-Wesley 1994 17.8 Silberschatz & Galvin 1994

Consistency − is locally cached copy of the data
consistent with the master copy?

g Client-initiated approach

- Client initiates a validity check.

- Server checks whether the local data are con-
sistent with the master copy.

g Server-initiated approach

- Server records, for each client, the (parts of)
files it caches.

- When server detects a potential inconsistency,
it must react.

Operating System Concepts, Addison-Wesley 1994 17.9 Silberschatz & Galvin 1994

Comparison of Caching and Remote Service

g In caching, many remote accesses handled
efficiently by the local cache; most remote
accesses will be served as fast as local ones.

g Servers are contacted only occasionally in cach-
ing (rather than for each access).

- Reduces server load and network traffic.

- Enhances potential for scalability.

g Remote server method handles every remote
access across the network; penalty in network
traffic, server load, and performance.

g Total network overhead in transmitting big
chunks of data (caching) is lower than a series of
responses to specific requests (remote-service).

Operating System Concepts, Addison-Wesley 1994 17.10 Silberschatz & Galvin 1994

g Caching is superior in access patterns with infre-
quent writes. With frequent writes, substantial
overhead incurred to overcome cache-consistency
problem.

g Benefit from caching when execution carried out
on machines with either local disks or large main
memories.

g Remote access on diskless, small-memory-
capacity machines should be done through
remote-service method.

g In caching, the lower intermachine interface is
different from the upper user interface.

g In remote-service, the intermachine interface mir-
rors the local user-file-system interface.

Operating System Concepts, Addison-Wesley 1994 17.11 Silberschatz & Galvin 1994

Stateful File Service

g Mechanism.

- Client opens a file.

- Server fetches information about the file from
its disk, stores it in its memory, and gives the
client a connection identifier unique to the
client and the open file.

- Identifier is used for subsequent accesses until
the session ends.

- Server must reclaim the main-memory space
used by clients who are no longer active.

g Increased performance.

- Fewer disk accesses.

- Stateful server knows if a file was opened for
sequential access and can thus read ahead the
next blocks.

Operating System Concepts, Addison-Wesley 1994 17.12 Silberschatz & Galvin 1994

Stateless File Server

g Avoids state information by making each request
self-contained.

g Each request identifies the file and position in the
file.

g No need to establish and terminate a connection
by open and close operations.

Operating System Concepts, Addison-Wesley 1994 17.13 Silberschatz & Galvin 1994

Distinctions between Stateful and Stateless Service

g Failure Recovery.

- A stateful server loses all its volatile state in a
crash.

b Restore state by recovery protocol based on
a dialog with clients, or abort operations
that were underway when the crash
occurred.

b Server needs to be aware of client failures in
order to reclaim space allocated to record
the state of crashed client processes (orphan
detection and elimination).

- With stateless server, the effects of server
failures and recovery are almost unnoticeable.
A newly reincarnated server can respond to a
self-contained request without any difficulty.

Operating System Concepts, Addison-Wesley 1994 17.14 Silberschatz & Galvin 1994

g Penalties for using the robust stateless service:

- longer request messages

- slower request processing

- additional constraints imposed on DFS design

g Some environments require stateful service.

- A server employing server-initiated cache vali-
dation cannot provide stateless service, since it
maintains a record of which files are cached by
which clients.

- UNIX use of file descriptors and implicit
offsets is inherently stateful; servers must
maintain tables to map the file descriptors to
inodes, and store the current offset within a
file.

Operating System Concepts, Addison-Wesley 1994 17.15 Silberschatz & Galvin 1994

File Replication

g Replicas of the same file reside on failure-
independent machines.

g Improves availability and can shorten service
time.

g Naming scheme maps a replicated file name to a
particular replica.

- Existence of replicas should be invisible to
higher levels.

- Replicas must be distinguished from one
another by different lower-level names.

g Updates − replicas of a file denote the same logi-
cal entity, and thus an update to any replica must
be reflected on all other replicas.

g Demand replication − reading a nonlocal replica
causes it to be cached locally, thereby generating
a new nonprimary replica.

Operating System Concepts, Addison-Wesley 1994 17.16 Silberschatz & Galvin 1994

Example Systems

g UNIX United

g The Sun Network File System (NFS)

g Andrew

g Sprite

g Locus

Operating System Concepts, Addison-Wesley 1994 17.17 Silberschatz & Galvin 1994

UNIX United − early attempt to scale up UNIX to a
distributed file system without modifying the UNIX

kernel.

g Adds software subsystem to set of interconnected
UNIX systems (component or constituent sys-
tems).

g Constructs a distributed system that is function-
ally indistinguishable from conventional central-
ized UNIX system.

g Interlinked UNIX systems compose a UNIX

United system joined together into a single nam-
ing structure, in which each component system
functions as a directory.

g The component unit is a complete UNIX directory
tree belonging to a certain machine; position of
component units in naming hierarchy is arbitrary.

Operating System Concepts, Addison-Wesley 1994 17.18 Silberschatz & Galvin 1994

g Roots of component units are assigned names so
that they become accessible and distinguishable
externally.

g Traditional root directories (e.g., /dev, /temp) are
maintained for each machine separately.

g Each component system has own set of named
users and own administrator (superuser).

g Superuser is responsible for accrediting users of
his own system, as well as for remote users.

Operating System Concepts, Addison-Wesley 1994 17.19 Silberschatz & Galvin 1994

g The Newcastle Connection − user-level software
layer incorporated in each component system.
This layer:

- separates the UNIX kernel and the user-level
programs.

- intercepts all system calls concerning files, and
filters out those that have to be redirected to
remote systems.

- accepts system calls that have been directed to
it from other systems.

Operating System Concepts, Addison-Wesley 1994 17.20 Silberschatz & Galvin 1994

The Sun Network File System (NFS)

g An implementation and a specification of a
software system for accessing remote files across
LANs (or WANs).

g The implementation is part of the SunOS operat-
ing system (version of 4.2BSD UNIX), running on
a Sun workstation using an unreliable datagram
protocol (UDP/IP protocol) and Ethernet.

Operating System Concepts, Addison-Wesley 1994 17.21 Silberschatz & Galvin 1994

g Interconnected workstations viewed as a set of
independent machines with independent file sys-
tems, which allows sharing among these file sys-
tems in a transparent manner.

- A remote directory is mounted over a local file
system directory. The mounted directory looks
like an integral subtree of the local file system,
replacing the subtree descending from the local
directory.

- Specification of the remote directory for the
mount operation is nontransparent; the host
name of the remote directory has to be pro-
vided. Files in the remote directory can then
be accessed in a transparent manner.

- Subject to access-rights accreditation, poten-
tially any file system (or directory within a file
system), can be mounted remotely on top of
any local directory.

Operating System Concepts, Addison-Wesley 1994 17.22 Silberschatz & Galvin 1994

g NFS is designed to operate in a heterogeneous
environment of different machines, operating sys-
tems, and network architectures; the NFS

specification is independent of these media.

g This independence is achieved through the use of
RPC primitives built on top of an External Data
Representation (XDR) protocol used between two
implementation-independent interfaces.

g The NFS specification distinguishes between the
services provided by a mount mechanism and the
actual remote-file-access services.

Operating System Concepts, Addison-Wesley 1994 17.23 Silberschatz & Galvin 1994

Mount Protocol − establishes initial logical connec-
tion between server and client.

g Mount operation includes name of remote direc-
tory to be mounted and name of server machine
storing it.

- A mount request is mapped to the correspond-
ing RPC and forwarded to the mount server
running on the server machine.

- Export list − specifies local file systems that
server exports for mounting, along with names
of machines that are permitted to mount them.

g Following a mount request that conforms to its
export list, the server returns a file handle that
serves as the key for further accesses.

g File handle − a file-system identifier, and an
inode number to identify the mounted directory
within the exported file system.

g The mount operation changes only the user’s
view and does not affect the server side.

Operating System Concepts, Addison-Wesley 1994 17.24 Silberschatz & Galvin 1994

NFS Protocol − provides a set of remote procedure
calls for remote file operations. The procedures sup-
port the following operations:

- searching for a file within a directory

- reading a set of directory entries

- manipulating links and directories

- accessing file attributes

- reading and writing files

g NFS servers are stateless; each request has to pro-
vide a full set of arguments.

g Modified data must be committed to the server’s
disk before results are returned to the client (the
advantages of caching are lost).

g The NFS protocol does not provide concurrency-
control mechanisms.

Operating System Concepts, Addison-Wesley 1994 17.25 Silberschatz & Galvin 1994

Three Major Layers of NFS Architecture

1. UNIX file-system interface (based on the open,
read, write, and close calls, and file descrip-
tors).

2. Virtual File System (VFS) layer − distinguishes
local files from remote ones, and local files are
further distinguished according to their file-
system types.

The VFS activates file-system-specific opera-
tions to handle local requests according to their
file-system types, and calls the NFS protocol
procedures for remote requests.

3. NFS service layer − bottom layer of the archi-
tecture; implements the NFS protocol.

Operating System Concepts, Addison-Wesley 1994 17.26 Silberschatz & Galvin 1994

Schematic View of the NFS Architecture

system-calls interface

VFS interface

RPC/XDR

NFS clientsystems
UNIX 4.2 file

network

UNIX 4.2 file
file systems

other types of

serverclient

RPC/XDR

NFS server systems

VFS interface

disk disk

Operating System Concepts, Addison-Wesley 1994 17.27 Silberschatz & Galvin 1994

Path-Name Translation

g Performed by breaking the path into component
names and performing a separate NFS lookup call
for every pair of component name and directory
vnode.

g To make lookup faster, a directory name lookup
cache on the client’s side holds the vnodes for
remote directory names.

Operating System Concepts, Addison-Wesley 1994 17.28 Silberschatz & Galvin 1994

Remote Operations

g Nearly one-to-one correspondence between regu-
lar UNIX system calls and the NFS protocol RPCs
(except opening and closing files).

g NFS adheres to the remote-service paradigm, but
employs buffering and caching techniques for the
sake of performance.

g File-blocks cache − when a file is opened, the ker-
nel checks with the remote server whether to
fetch or revalidate the cached attributes. Cached
file blocks are used only if the corresponding
cached attributes are up to date.

g File-attribute cache − the attribute cache is
updated whenever new attributes arrive from the
server.

g Clients do not free delayed-write blocks until the
server confirms that the data have been written to
disk.

Operating System Concepts, Addison-Wesley 1994 17.29 Silberschatz & Galvin 1994

ANDREW

g A distributed computing environment under
development since 1983 at Carnegie-Mellon
University.

g Andrew is highly scalable; the system is targeted
to span over 5000 workstations.

g Andrew distinguishes between client machines
(workstations) and dedicated server machines.
Servers and clients run the 4.2BSD UNIX OS and
are interconnected by an internet of LANs.

Operating System Concepts, Addison-Wesley 1994 17.30 Silberschatz & Galvin 1994

g Clients are presented with a partitioned space of
file names: a local name space and a shared name
space.

g Dedicated servers, called Vice, present the shared
name space to the clients as an homogeneous,
identical, and location transparent file hierarchy.

g The local name space is the root file system of a
workstation, from which the shared name space
descends.

g Workstations run the Virtue protocol to communi-
cate with Vice, and are required to have local
disks where they store their local name space.

g Servers collectively are responsible for the
storage and management of the shared name
space.

Operating System Concepts, Addison-Wesley 1994 17.31 Silberschatz & Galvin 1994

g Clients and servers are structured in clusters inter-
connected by a backbone LAN.

g A cluster consists of a collection of workstations
and a cluster server and is connected to the back-
bone by a router.

g A key mechanism selected for remote file opera-
tions is whole file caching. Opening a file causes
it to be cached, in its entirety, on the local disk.

Operating System Concepts, Addison-Wesley 1994 17.32 Silberschatz & Galvin 1994

Shared Name Space − volumes

g Andrew’s volumes are small component units
associated with the files of a single client.

g A fid identifies a Vice file or directory. A fid is 96
bits long and has three equal-length components:

- volume number

- vnode number − index into an array containing
the inodes of files in a single volume.

- uniquifier − allows reuse of vnode numbers,
thereby keeping certain data structures com-
pact.

Fids are location transparent; therefore, file move-
ments from server to server do not invalidate
cached directory contents.

g Location information is kept on a volume basis,
and the information is replicated on each server.

Operating System Concepts, Addison-Wesley 1994 17.33 Silberschatz & Galvin 1994

File Operations

g Andrew caches entire files from servers. A client
workstation interacts with Vice servers only dur-
ing opening and closing of files.

g Venus − caches files from Vice when they are
opened, and stores modified copies of files back
when they are closed.

g Reading and writing bytes of a file are done by
the kernel without Venus intervention on the
cached copy.

g Venus caches contents of directories and sym-
bolic links, for path-name translation.

g Exceptions to the caching policy are
modifications to directories that are made directly
on the server responsible for that directory.

Operating System Concepts, Addison-Wesley 1994 17.34 Silberschatz & Galvin 1994

Implementation

g Client processes are interfaced to a UNIX kernel
with the usual set of system calls.

g Venus carries out path-name translation com-
ponent by component.

g The UNIX file system is used as a low-level
storage system for both servers and clients. The
client cache is a local directory on the
workstation’s disk.

g Both Venus and server processes access UNIX

files directly by their inodes to avoid the expen-
sive path name-to-inode translation routine.

Operating System Concepts, Addison-Wesley 1994 17.35 Silberschatz & Galvin 1994

g Venus manages two separate caches:

- one for status

- one for data

g LRU algorithm used to keep each of them
bounded in size

g The status cache is kept in virtual memory to
allow rapid servicing of stat (file status returning)
system calls.

g The data cache is resident on the local disk, but
the UNIX I/O buffering mechanism does some
caching of the disk blocks in memory that are
transparent to Venus.

Operating System Concepts, Addison-Wesley 1994 17.36 Silberschatz & Galvin 1994

SPRITE

g An experimental distributed OS under develop-
ment at the Univ. of California at Berkeley; part
of the Spur project − design and construction of a
high-performance multiprocessor workstation.

g Targets a configuration of large, fast disks on a
few servers handling storage for hundreds of
diskless workstations which are interconnected by
LANs.

g Because file caching is used, the large physical
memories compensate for the lack of local disks.

g Interface similar to UNIX; file system appears as a
single UNIX tree encompassing all files and dev-
ices in the network, equally and transparently
accessible from every workstation.

g Enforces consistency of shared files and emulates
a single time-sharing UNIX system in a distri-
buted environment.

Operating System Concepts, Addison-Wesley 1994 17.37 Silberschatz & Galvin 1994

g Uses backing files to store data and stacks of run-
ning processes, simplifying process migration and
enabling flexibility and sharing of the space allo-
cated for swapping.

g The virtual memory and file system share the
same cache and negotiate on how to divide it
according to their conflicting needs.

g Sprite provides a mechanism for sharing an
address space between client processes on a sin-
gle workstation (in UNIX, only code can be
shared among processes).

Operating System Concepts, Addison-Wesley 1994 17.38 Silberschatz & Galvin 1994

Prefix Tables

g A single file-system hierarchy composed of
several subtrees called domains (component
units), with each server providing storage for one
or more domains.

g Prefix table − a server map maintained by each
machine to map domains to servers.

g Each entry in a prefix table corresponds to one of
the domains. It contains:

- the name of the topmost directory in the
domain (prefix for the domain).

- the network address of the server storing the
domain.

- a numeric designator identifying the domain’s
root directory for the storing server.

g The prefix mechanism ensures that the domain’s
files can be opened and accessed from any
machine regardless of the status of the servers of
domains above the particular domain.

Operating System Concepts, Addison-Wesley 1994 17.39 Silberschatz & Galvin 1994

g Lookup operation for an absolute path name:

1. Client searches its prefix table for the longest
prefix matching the given file name.

2. Client strips the matching prefix from the file
name and sends the remainder of the name to
the selected server along with the designator
from the prefix-table entry.

3. Server uses this designator to locate the root
directory of the domain, and then proceeds by
usual UNIX path-name translation for the
remainder of the file name.

4. If server succeeds in completing the transla-
tion, it replies with a designator for the open
file.

Operating System Concepts, Addison-Wesley 1994 17.40 Silberschatz & Galvin 1994

g Cases where the server does not complete the
lookup:

- Server encounters an absolute path name in a
symbolic link. Absolute path name returned to
client, which looks up the new name in its
prefix table and initiates another lookup with a
new server.

- If a path name ascends past the root of a
domain, the server returns the remainder of the
path name to the client, which combines the
remainder with the prefix of the domain that
was just exited to form a new absolute path
name.

- If a path name descends into a new domain or
if a root of a domain is beneath a working
directory and a file in that domain is referred to
with a relative path name, a remote link (a spe-
cial marker file) is placed to indicate domain
boundaries. When a server encounters a
remote link, it returns the file name to the
client.

Operating System Concepts, Addison-Wesley 1994 17.41 Silberschatz & Galvin 1994

g When a remote link is encountered by the server,
it indicates that the client lacks an entry for a
domain — the domain whose remote link was
encountered.

g To obtain the missing prefix information, a client
broadcasts a file name.

- broadcast − network message seen by all sys-
tems on the network.

- The server storing that file responds with the
prefix-table entry for this file, including the
string to use as a prefix, the server’s address,
and the descriptor corresponding to the
domain’s root.

- The client then can fill in the details in its
prefix table.

Operating System Concepts, Addison-Wesley 1994 17.42 Silberschatz & Galvin 1994

Caching and Consistency

g Capitalizing on the large main memories and
advocating diskless workstations, file caches are
stored in memory, instead of on local disks.

g Caches are organized on a block (4K) basis,
rather than on a file basis.

g Each block in the cache is virtually addressed by
the file designator and a block location within the
file; enables clients to create new blocks in the
cache and to locate any block without the file
inode being brought from the server.

g A delayed-write approach is used to handle file
modification.

Operating System Concepts, Addison-Wesley 1994 17.43 Silberschatz & Galvin 1994

g Consistency of shared files enforced through
version-number scheme; a file’s version number
is incremented whenever a file is opened in write
mode.

g Notifying the servers whenever a file is opened or
closed prohibits performance optimizations such
as name caching.

g Servers are centralized control points for cache
consistency; they maintain state information
about open files.

Operating System Concepts, Addison-Wesley 1994 17.44 Silberschatz & Galvin 1994

LOCUS

g Project at the Univ. of California at Los Angeles
to build a full-scale distributed OS; upward-
compatible with UNIX, but the extensions are
major and necessitate an entirely new kernel.

g File system is a single tree-structure naming
hierarchy which covers all objects of all the
machines in the system.

g Locus names are fully transparent.

g A Locus file may correspond to a set of copies
distributed on different sites.

g File replication increases availability for reading
purposes in the event of failures and partitions.

g A primary-copy approach is adopted for
modifications.

Operating System Concepts, Addison-Wesley 1994 17.45 Silberschatz & Galvin 1994

g Locus adheres to the same file-access semantics
as standard UNIX.

g Emphasis on high performance led to the incor-
poration of networking functions into the operat-
ing system.

g Specialized remote operations protocols used for
kernel-to-kernel communication, rather than the
RPC protocol.

g Reducing the number of network layers enables
performance for remote operations, but this spe-
cialized protocol hampers the portability of
Locus.

Operating System Concepts, Addison-Wesley 1994 17.46 Silberschatz & Galvin 1994

Name Structure

g Logical filegroups form a unified structure that
disguises location and replication details from
clients and applications.

g A logical filegroup is mapped to multiple physical
containers (or packs) that reside at various sites
and that store file replicas of that filegroup.

g The <logical-filegroup-number, inode number>
(the file’s designator) serves as a globally unique
low-level name for a file.

g Each site has a consistent and complete view of
the logical name structure.

- Globally replicated logical mount table con-
tains an entry for each logical filegroup.

- An entry records the file designator of the
directory over which the filegroup is logically
mounted, and indication of which site is
currently responsible for access synchroniza-
tion within the filegroup.

Operating System Concepts, Addison-Wesley 1994 17.47 Silberschatz & Galvin 1994

g An individual pack is identified by pack numbers
and a logical filegroup number.

g One pack is designated as the primary copy; a file
must be stored at the primary copy site, and can
be stored also at any subset of the other sites
where there exists a pack corresponding to its
filegroup.

g The various copies of a file are assigned the same
inode number on all the filegroup’s packs.

- Reference over the network to data pages use
logical, rather than physical, page numbers.

- Each pack has a mapping of these logical
numbers to its physical numbers.

- Each inode of a file copy contains a version
number, determining which copy dominates
other copies.

g Container table at each site maps logical filegroup
numbers to disk locations for the filegroups that
have packs locally on this site.

Operating System Concepts, Addison-Wesley 1994 17.48 Silberschatz & Galvin 1994

Locus distinguishes three logical roles in file
accesses, each one potentially performed by a dif-
ferent site:

1. Using site (US) − issues requests to open and
access a remote file.

2. Storage site (SS) − site selected to serve requests.

3. Current synchronization site (CSS) − maintains
the version number and a list of physical con-
tainers for every file in the filegroup.

- Enforces global synchronization policy for a
filegroup.

- Selects an SS for each open request referring to
a file in the filegroup.

- At most one CSS for each filegroup in any set
of communicating sites.

Operating System Concepts, Addison-Wesley 1994 17.49 Silberschatz & Galvin 1994

Synchronized Accesses to Files

g Locus tries to emulate conventional UNIX seman-
tics on file accesses in a distributed environment.

- Multiple processes are permitted to have the
same file open concurrently.

- These processes issue read and write system
calls.

- The system guarantees that each successive
operation sees the effects of the ones that pre-
cede it.

g In Locus, the processes share the same
operating-system data structures and caches, and
by using locks on data structures to serialize
requests.

Operating System Concepts, Addison-Wesley 1994 17.50 Silberschatz & Galvin 1994

Two Sharing Modes

g A single token scheme allows several processes
descending from the same ancestor to share the
same position (offset) in a file. A site can
proceed to execute system calls that need the
offset only when the token is present.

g A multiple-data-tokens scheme synchronizes
sharing of the file’s in-core inode and data.

- Enforces a single exclusive-writer, multiple-
readers policy.

- Only a site with the write token for a file may
modify the file, and any site with a read token
can read the file.

g Both token schemes are coordinated by token
managers operating at the corresponding storage
sites.

Operating System Concepts, Addison-Wesley 1994 17.51 Silberschatz & Galvin 1994

Operation in a Faulty Environment

g Maintain, within a single partition, strict syn-
chronization among copies of a file, so that all
clients of that file within that partition see the
most recent version.

g Primary-copy approach eliminates conflicting
updates, since the primary copy must be in the
client’s partition to allow an update.

g To detect and propagate updates, the system
maintains a commit count which enumerates each
commit of every file in the filegroup.

g Each pack has a lower-water mark (lwm) that is a
commit-count value, up to which the system
guarantees that all prior commits are reflected in
the pack.

Operating System Concepts, Addison-Wesley 1994 17.52 Silberschatz & Galvin 1994

CHAPTER 18: DISTRIBUTED COORDINATION

g Event Ordering

g Mutual Exclusion

g Atomicity

g Concurrency Control

g Deadlock Handling

g Election Algorithms

g Reaching Agreement

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Event Ordering

g Happened-before relation (denoted by →).

1. If A and B are events in the same process, and
A was executed before B, then A → B.

2. If A is the event of sending a message by one
process and B is the event of receiving that
message by another process, then A → B.

3. If A → B and B → C then A → C.

Operating System Concepts, Addison-Wesley 1994 18.1 Silberschatz & Galvin 1994

g Implementation of →

- Associate a timestamp with each system event.
Require that for every pair of events A and B,
if A → B, then the timestamp of A is less than
the timestamp of B.

- Within each process Pi a logical clock, LCi is
associated. The logical clock can be imple-
mented as a simple counter that is incremented
between any two successive events executed
within a process.

- A process advances its logical clock when it
receives a message whose timestamp is greater
than the current value of its logical clock.

- If the timestamps of two events A and B are the
same, then the events are concurrent. We may
use the process identity numbers to break ties
and to create a total ordering.

Operating System Concepts, Addison-Wesley 1994 18.2 Silberschatz & Galvin 1994

Distributed Mutual Exclusion

g Assumptions

- The system consists of n processes; each pro-
cess Pi resides at a different processor.

- Each process has a critical section that requires
mutual exclusion.

g Requirement

- If Pi is executing in its critical section, then no
other process Pj is executing in its critical sec-
tion.

g We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections.

Operating System Concepts, Addison-Wesley 1994 18.3 Silberschatz & Galvin 1994

Centralized Approach

g One of the processes in the system is chosen to
coordinate the entry to the critical section.

g A process that wants to enter its critical section
sends a request message to the coordinator.

g The coordinator decides which process can enter
the critical section next, and it sends that process
a reply message.

g When the process receives a reply message from
the coordinator, it enters its critical section.

g After exiting its critical section, the process sends
a release message to the coordinator and proceeds
with its execution.

g This scheme requires three messages per critical-
section entry:

- request

- reply

- release

Operating System Concepts, Addison-Wesley 1994 18.4 Silberschatz & Galvin 1994

Fully Distributed Approach

g When process Pi wants to enter its critical sec-
tion, it generates a new timestamp, TS, and sends
the message request(Pi , TS) to all other processes
in the system.

g When process Pj receives a request message, it
may reply immediately or it may defer sending a
reply back.

g When process Pi receives a reply message from
all other processes in the system, it can enter its
critical section.

g After exiting its critical section, the process sends
reply messages to all its deferred requests.

Operating System Concepts, Addison-Wesley 1994 18.5 Silberschatz & Galvin 1994

Fully Distributed Approach (continued)

g The decision whether process Pj replies immedi-
ately to a request(Pi , TS) message or defers its
reply is based on three factors:

1. If Pj is in its critical section, then it defers its
reply to Pi .

2. If Pj does not want to enter its critical section,
then it sends a reply immediately to Pi .

3. If Pj wants to enter its critical section but has
not yet entered it, then it compares its own
request timestamp with the timestamp TS.

- If its own request timestamp is greater than
TS, then it sends a reply immediately to Pi

(Pi asked first).

- Otherwise, the reply is deferred.

Operating System Concepts, Addison-Wesley 1994 18.6 Silberschatz & Galvin 1994

Fully Distributed Approach − desirable behavior:

g Freedom from deadlock is ensured.

g Freedom from starvation is ensured, since entry to
the critical section is scheduled according to the
timestamp ordering. The timestamp ordering
ensures that processes are served in a first-come,
first-served order.

g The number of messages per critical-section entry
is 2 × (n − 1). This is the minimum number of
required messages per critical-section entry when
processes act independently and concurrently.

Operating System Concepts, Addison-Wesley 1994 18.7 Silberschatz & Galvin 1994

Fully Distributed Approach − three undesirable
consequences:

1. The processes need to know the identity of all
other processes in the system, which makes the
dynamic addition and removal of processes more
complex.

2. If one of the processes fails, then the entire
scheme collapses. This can be dealt with by con-
tinuously monitoring the state of all the processes
in the system.

3. Processes that have not entered their critical sec-
tion must pause frequently to assure other
processes that they intend to enter the critical sec-
tion. This protocol is therefore suited for small,
stable sets of cooperating processes.

Operating System Concepts, Addison-Wesley 1994 18.8 Silberschatz & Galvin 1994

Atomicity

g Either all the operations associated with a pro-
gram unit are executed to completion, or none are
performed.

g Ensuring atomicity in a distributed system
requires a transaction coordinator, which is
responsible for the following:

- Starting the execution of the transaction.

- Breaking the transaction into a number of sub-
transactions, and distributing these subtransac-
tions to the appropriate sites for execution.

- Coordinating the termination of the transac-
tion, which may result in the transaction being
committed at all sites or aborted at all sites.

Operating System Concepts, Addison-Wesley 1994 18.9 Silberschatz & Galvin 1994

Two-Phase Commit Protocol (2PC)

g Assumes fail-stop model.

g Execution of the protocol is initiated by the
coordinator after the last step of the transaction
has been reached.

g When the protocol is initiated, the transaction
may still be executing at some of the local sites.

g The protocol involves all the local sites at which
the transaction executed.

Operating System Concepts, Addison-Wesley 1994 18.10 Silberschatz & Galvin 1994

g Let T be a transaction initiated at site Si , and let
the transaction coordinator at Si be Ci .

g Phase 1: Obtaining a decision

- Ci adds <prepare T > record to the log.

- Ci sends <prepare T > message to all sites.

- When a site receives a <prepare T > message,
the transaction manager determines if it can
commit the transaction.

b If no: add <no T > record to the log and
respond to Ci with <abort T >.

b If yes:

* add <ready T > record to the log.

* force all log records for T onto stable
storage.

* transaction manager sends <ready T >
message to Ci .

Operating System Concepts, Addison-Wesley 1994 18.11 Silberschatz & Galvin 1994

Phase 1 (cont’d)

g Coordinator collects responses

- All respond ‘‘ready’’,

decision is commit.

- At least one response is ‘‘abort’’,

decision is abort.

- At least one participant fails to respond within
timeout period,

decision is abort.

Operating System Concepts, Addison-Wesley 1994 18.12 Silberschatz & Galvin 1994

g Phase 2: Recording the decision in the database

- Coordinator adds a decision record (<abort T >
or <commit T >) to its log and forces record
onto stable storage.

- Once that record reaches stable storage it is
irrevocable (even if failures occur).

- Coordinator sends a message to each partici-
pant informing it of the decision (commit or
abort).

- Participants take appropriate action locallyl

Operating System Concepts, Addison-Wesley 1994 18.13 Silberschatz & Galvin 1994

Failure Handling in 2PC

g Site failure

- The log contains a <commit T> record. In this
case, the site executes redo(T).

- The log contains an <abort T> record. In this
case, the site executes undo(T).

- The log contains a <ready T> record; consult
Ci . If Ci is down, site sends query-status T
message to the other sites.

- The log contains no control records concerning
T. In this case, the site executes undo(T).

Operating System Concepts, Addison-Wesley 1994 18.14 Silberschatz & Galvin 1994

g Coordinator Ci failure

- If an active site contains a <commit T> record
in its log, then T must be committed.

- If an active site contains an <abort T> record in
its log, then T must be aborted.

- If some active site does not contain the record
<ready T> in its log, then the failed coordinator
Ci cannot have decided to commit T. Rather
than wait for Ci to recover, it is preferable to
abort T.

- All active sites have a <ready T> record in
their logs, but no additional control records. In
this case we must wait for the coordinator to
recover. Blocking problem − T is blocked
pending the recovery of site Si .

Operating System Concepts, Addison-Wesley 1994 18.15 Silberschatz & Galvin 1994

Concurrency Control

g Modify the centralized concurrency schemes to
accommodate the distribution of transactions.

g Transaction manager coordinates execution of
transactions (or subtransactions) that access data
at local sites.

g Local transaction only executes at that site.

g Global transaction executes at several sites.

Operating System Concepts, Addison-Wesley 1994 18.16 Silberschatz & Galvin 1994

Locking Protocols

g Can use the two-phase locking protocol in a dis-
tributed environment by changing how the lock
manager is implemented.

g Nonreplicated scheme − each site maintains a
local lock manager which administers lock and
unlock requests for those data items that are
stored in that site.

- Simple implementation involves two message
transfers for handling lock requests, and one
message transfer for handling unlock requests.

- Deadlock handling is more complex.

Operating System Concepts, Addison-Wesley 1994 18.17 Silberschatz & Galvin 1994

g Single-coordinator approach − a single lock
manager resides in a single chosen site; all lock
and unlock requests are made at that site.

- Simple implementation

- Simple deadlock handling

- Possibility of bottleneck

- Vulnerable to loss of concurrency controller if
single site fails.

- Multiple-coordinator approach distributes
lock-manager function over several sites.

Operating System Concepts, Addison-Wesley 1994 18.18 Silberschatz & Galvin 1994

g Majority protocol − avoids drawbacks of central
control by dealing with replicated data in a decen-
tralized manner.

- More complicated to implement

- Deadlock-handling algorithms must be
modified; possible for deadlock to occur in
locking only one data item.

g Biased protocol − similar to majority protocol,
but requests for shared locks prioritized over
requests for exclusive locks.

- Less overhead on read operations than in
majority protocol; but has additional overhead
on writes.

- Like majority protocol, deadlock handling is
complex.

Operating System Concepts, Addison-Wesley 1994 18.19 Silberschatz & Galvin 1994

g Primary copy − one of the sites at which a replica
resides is designated as the primary site. Request
to lock a data item is made at the primary site of
that data item.

- Concurrency control for replicated data han-
dled in a manner similar to that for unrepli-
cated data.

- Simple implementation, but if primary site
fails, the data item is unavailable, even though
other sites may have a replica.

Operating System Concepts, Addison-Wesley 1994 18.20 Silberschatz & Galvin 1994

Timestamping

g Generate unique timestamps in distributed
scheme:

- Each site generates a unique local timestamp.

- The global unique timestamp is obtained by
concatenation of the unique local timestamp
with the unique site identifier.

- Use a logical clock defined within each site to
ensure the fair generation of timestamps.

g Timestamp-ordering scheme − combine the cen-
tralized concurrency control timestamp scheme
(Section 6.9) with the 2PC protocol to obtain a
protocol that ensures serializability with no cas-
cading rollbacks.

Operating System Concepts, Addison-Wesley 1994 18.21 Silberschatz & Galvin 1994

Deadlock Prevention

g Resource-ordering deadlock-prevention − define a
global ordering among the system resources.

- Assign a unique number to all system
resources.

- A process may request a resource with unique
number i only if it is not holding a resource
with a unique number greater than i.

- Simple to implement; requires little overhead.

g Banker’s algorithm − designate one of the
processes in the system as the process that main-
tains the information necessary to carry out the
Banker’s algorithm.

- Also implemented easily, but may require too
much overhead.

Operating System Concepts, Addison-Wesley 1994 18.22 Silberschatz & Galvin 1994

g Timestamped deadlock-prevention scheme

- Each process Pi is assigned a unique priority
number.

- Priority numbers are used to decide whether a
process Pi should wait for a process Pj . Pi can
wait for Pj if Pi has a higher priority than Pj ;
otherwise Pi is rolled back.

- The scheme prevents deadlocks. For every
edge Pi → Pj in the wait-for graph, Pi has a
higher priority than Pj . Thus, a cycle cannot
exist.

Operating System Concepts, Addison-Wesley 1994 18.23 Silberschatz & Galvin 1994

g Wait-die scheme − based on a nonpreemptive
technique.

- If Pi requests a resource currently held by Pj ,
Pi is allowed to wait only if it has a smaller
timestamp than does Pj (Pi is older than Pj).
Otherwise, Pi is rolled back (dies).

- Example: Suppose that processes P 1, P 2, and
P 3 have timestamps 5, 10, and 15, respec-
tively.

b If P 1 requests a resource held by P 2, then
P 1 will wait.

b If P 3 requests a resource held by P 2, then
P 3 will be rolled back.

Operating System Concepts, Addison-Wesley 1994 18.24 Silberschatz & Galvin 1994

g Wound-wait scheme − based on a preemptive
technique; counterpart to the wait-die system.

- If Pi requests a resource currently held by Pj ,
Pi is allowed to wait only if it has a larger
timestamp than does Pj (Pi is younger than
Pj). Otherwise, Pj is rolled back (Pj is
wounded by Pi).

- Example: Suppose that processes P 1, P 2, and
P 3 have timestamps 5, 10, and 15, respec-
tively.

b If P 1 requests a resource held by P 2, then
the resource will be preempted from P 2 and
P 2 will be rolled back.

b If P 3 requests a resource held by P 2, then
P 3 will wait.

Operating System Concepts, Addison-Wesley 1994 18.25 Silberschatz & Galvin 1994

Deadlock Detection − Centralized Approach

g Each site keeps a local wait-for graph. The nodes
of the graph correspond to all the processes that
are currently either holding or requesting any of
the resources local to that site.

g A global wait-for graph is maintained in a single
coordination process. This global graph is the
union of all the local wait-for graphs.

g There are three different options (points in time)
when the wait-for graph may be constructed:

1. Whenever a new edge is inserted or removed
in one of the local wait-for graphs.

2. Periodically, when a number of changes have
occurred in a wait-for graph.

3. Whenever the coordinator needs to invoke the
cycle-detection algorithm.

g Unnecessary rollbacks may occur as a result of
false cycles.

Operating System Concepts, Addison-Wesley 1994 18.26 Silberschatz & Galvin 1994

Detection algorithm based on option 3.

g Append unique identifiers (timestamps) to
requests from different sites.

g When process Pi , at site A, requests a resource
from process Pj , at site B, a request message with
timestamp TS is sent.

g The edge Pi → Pj with the label TS is inserted in
the local wait-for of A. This edge is inserted in the
local wait-for graph of B only if B has received
the request message and cannot immediately
grant the requested resource.

Operating System Concepts, Addison-Wesley 1994 18.27 Silberschatz & Galvin 1994

The algorithm:

1. The controller sends an initiating message to each
site in the system.

2. On receiving this message, a site sends its local
wait-for graph to the coordinator.

3. When the controller has received a reply from
each site, it constructs a graph as follows:

a. The constructed graph contains a vertex for
every process in the system.

b. The graph has an edge Pi → Pj if and only if
(1) there is an edge Pi → Pj in one of the
wait-for graphs, or (2) an edge Pi → Pj with
some label TS appears in more than one wait-
for graph.

If the constructed graph contains a cycle ⇒
deadlock.

Operating System Concepts, Addison-Wesley 1994 18.28 Silberschatz & Galvin 1994

Fully Distributed Approach

g All controllers share equally the responsibility for
detecting deadlock.

g Every site constructs a wait-for graph that
represents a part of the total graph.

g We add one additional node Pex to each local
wait-for graph.

g If a local wait-for graph contains a cycle that does
not involve node Pex , then the system is in a
deadlock state.

g A cycle involving Pex implies the possibility of a
deadlock. To ascertain whether a deadlock does
exist, a distributed deadlock-detection algorithm
must be invoked.

Operating System Concepts, Addison-Wesley 1994 18.29 Silberschatz & Galvin 1994

Election Algorithms − determine where a new copy
of the coordinator should be restarted.

g Assume that a unique priority number is associ-
ated with each active process in the system, and
assume that the priority number of process Pi is i.

g Assume a one-to-one correspondence between
processes and sites.

g The coordinator is always the process with the
largest priority number. When a coordinator fails,
the algorithm must elect that active process with
the largest priority number.

g Two algorithms, the bully algorithm and a ring
algorithm, can be used to elect a new coordinator
in case of failures.

Operating System Concepts, Addison-Wesley 1994 18.30 Silberschatz & Galvin 1994

Bully Algorithm − applicable to systems where
every process can send a message to every other pro-
cess in the system.

g If process Pi sends a request that is not answered
by the coordinator within a time interval T,
assume that the coordinator has failed; Pi tries to
elect itself as the new coordinator.

g Pi sends an election message to every process
with a higher priority number, Pi then waits for
any of these processes to answer within T.

g If no response within T, assume that all processes
with numbers greater than i have failed; Pi elects
itself the new coordinator.

g If answer is received, Pi begins time interval T’,
waiting to receive a message that a process with a
higher priority number has been elected.

g If no message is sent within T’, assume the pro-
cess with a higher number has failed; Pi should
restart the algorithm.

Operating System Concepts, Addison-Wesley 1994 18.31 Silberschatz & Galvin 1994

g If Pi is not the coordinator, then, at any time dur-
ing execution, Pi may receive one of the follow-
ing two messages from process Pj :

1. Pj is the new coordinator (j > i). Pi , in turn,
records this information.

2. Pj started an election (j < i). Pi sends a
response to Pj and begins its own election
algorithm, provided that Pi has not already ini-
tiated such an election.

g After a failed process recovers, it immediately
begins execution of the same algorithm.

g If there are no active processes with higher
numbers, the recovered process forces all
processes with lower numbers to let it become the
coordinator process, even if there is a currently
active coordinator with a lower number.

Operating System Concepts, Addison-Wesley 1994 18.32 Silberschatz & Galvin 1994

Ring Algorithm − applicable to systems organized as
a ring (logically or physically).

g Assumes that the links are unidirectional, and that
processes send their messages to their right neigh-
bors.

g Each process maintains an active list, consisting
of all the priority numbers of all active processes
in the system when the algorithm ends.

1. If process Pi detects a coordinator failure, it
creates a new active list that is initially empty.
It then sends a message elect(i) to its right
neighbor, and adds the number i to its active
list.

Operating System Concepts, Addison-Wesley 1994 18.33 Silberschatz & Galvin 1994

2. If Pi receives a message elect(j) from the pro-
cess on the left, it must respond in one of three
ways:

a. If this is the first elect message it has seen or
sent, Pi creates a new active list with the
numbers i and j. It then sends the message
elect(i), followed by the message elect(j).

b. If i ≠ j, then Pi adds j to its active list and
forwards the message to its right neighbor.

c. If i = j, then the active list for Pi now con-
tains the numbers of all the active processes
in the system. Pi can now determine the
largest number in the active list to identify
the new coordinator process.

Operating System Concepts, Addison-Wesley 1994 18.34 Silberschatz & Galvin 1994

Reaching Agreement

g There are applications where a set of processes
wish to agree on a common "value."

g Such agreement may not take place due to:

- Faulty communication medium

- Faulty processes

b Processes may send garbled or incorrect
messages to other processes.

b A subset of the processes may collaborate
with each other in an attempt to defeat the
scheme.

Operating System Concepts, Addison-Wesley 1994 18.35 Silberschatz & Galvin 1994

Faulty Communications

g Process Pi at site A, has sent a message to process
Pj at site B, and needs to know whether Pj has
received the message in order to decide how to
proceed.

g Detect failures using a time-out scheme.

- When Pi sends out a message, it also specifies
a time interval during which it is willing to
wait for an acknowledgment message from Pj .

- When Pj receives the message, it immediately
sends an acknowledgment to Pi .

- If Pi receives the acknowledgment message
within the specified time interval, it concludes
that Pj has received its message. If a time-out
occurs, Pi needs to retransmit its message and
wait for an acknowledgment.

- Continue procedure until Pi either receives an
acknowledgment, or is notified by the system
that B is down.

Operating System Concepts, Addison-Wesley 1994 18.36 Silberschatz & Galvin 1994

g Suppose that Pj also needs to know that Pi has
received its acknowledgment message, in order to
decide on how to proceed.

- In the presence of failure, it is not possible to
accomplish this task.

- It is not possible in a distributed environment
for processes Pi and Pj to agree completely on
their respective states.

Operating System Concepts, Addison-Wesley 1994 18.37 Silberschatz & Galvin 1994

Faulty processes (Byzantine generals problem)

g Communication medium is reliable, but processes
can fail in unpredictable ways.

g Consider a system of n processes, of which no
more than m are faulty. Suppose that each process
Pi has some private value of Vi .

g Devise an algorithm that allows each nonfaulty Pi

to construct a vector Xi = (Ai ,1, Ai ,2, ..., Ai ,n)
such that:

1. If Pj is a nonfaulty process, then Ai , j = Vj .

2. If Pi and Pj are both nonfaulty processes, then
Xi = Xj .

g Solutions share the following properties.

- A correct algorithm can be devised only if
n ≥ 3 × m + 1.

- The worst-case delay for reaching agreement is
proportionate to m + 1 message-passing delays.

Operating System Concepts, Addison-Wesley 1994 18.38 Silberschatz & Galvin 1994

g An algorithm for the case where m = 1 and n = 4
requires two rounds of information exchange:

1. Each process sends its private value to the
other three processes.

2. Each process sends the information it has
obtained in the first round to all other
processes.

g If a faulty process refuses to send messages, a
nonfaulty process can choose an arbitrary value
and pretend that that value was sent by that pro-
cess.

g After the two rounds are completed, a nonfaulty
process Pi can construct its vector
Xi = (Ai ,1, Ai ,2, Ai ,3, Ai ,4) as follows:

1. Ai ,i = Vi .

2. For j ≠ i, if at least two of the three values
reported for process Pj agree, then the major-
ity value is used to set the value of Ai,j. Other-
wise, a default value (nil) is used.

Operating System Concepts, Addison-Wesley 1994 18.39 Silberschatz & Galvin 1994

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

