
CHAPTER 6: PROCESS SYNCHRONIZATION

g Background

g The Critical-Section Problem

g Synchronization Hardware

g Semaphores

g Classical Problems of Synchronization

g Critical Regions

g Monitors

g Synchronization in Solaris 2

g Atomic Transactions

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Background

g Concurrent access to shared data may result in
data inconsistency.

g Maintaining data consistency requires mechan-
isms to ensure the orderly execution of cooperat-
ing processes.

g Shared-memory solution to bounded-buffer prob-
lem (Section 4.4) allows at most n −1 items in
buffer at the same time.

g Suppose that we modify the producer-consumer
code (Section 4.6) by adding a variable counter,
initialized to 0 and incremented each time a new
item is added to the buffer.

The new scheme is illustrated in the following
slide.

Operating System Concepts, Addison-Wesley 1994 6.1 Silberschatz & Galvin 1994

g Shared data

type item = ... ;
var buffer: array [0..n−1] of item;
in, out: 0..n−1;
counter: 0..n;
in := 0;
out := 0;
counter := 0;

g Producer process

repeat
...

produce an item in nextp
...

while counter = n do no-op;
buffer[in] := nextp;
in := in+1 mod n;
counter := counter + 1;

until false;

Operating System Concepts, Addison-Wesley 1994 6.2 Silberschatz & Galvin 1994

g Consumer process

repeat
while counter = 0 do no-op;
nextc := buffer[out];
out := out+1 mod n;
counter := counter − 1;

...
consume the item in nextc

...
until false;

g The statements:

counter := counter +1;

counter := counter − 1;

must be executed atomically.

Operating System Concepts, Addison-Wesley 1994 6.3 Silberschatz & Galvin 1994

The Critical-Section Problem

g n processes all competing to use some shared
data

g Each process has a code segment, called critical
section, in which the shared data is accessed.

g Problem − ensure that when one process is exe-
cuting in its critical section, no other process is
allowed to execute in its critical section.

g Structure of process Pi

repeat
iiiiiiiiiiiii
entry sectioniiiiiiiiiiiiicc cc

critical section
iiiiiiiiiiii
exit sectioniiiiiiiiiiiicc cc

remainder section

until false;

Operating System Concepts, Addison-Wesley 1994 6.4 Silberschatz & Galvin 1994

A solution to the critical-section problem must
satisfy the following three requirements:

1) Mutual Exclusion. If process Pi is executing in
its critical section, then no other processes can be
executing in their critical sections.

2) Progress. If no process is executing in its critical
section and there exist some processes that wish
to enter their critical section, then the selection of
the processes that will enter the critical section
next cannot be postponed indefinitely.

3) Bounded Waiting. A bound must exist on the
number of times that other processes are allowed
to enter their critical sections after a process has
made a request to enter its critical section and
before that request is granted.

g Assumption that each process is executing at a
nonzero speed.

g No assumption concerning relative speed of
the n processes.

Operating System Concepts, Addison-Wesley 1994 6.5 Silberschatz & Galvin 1994

Trace of initial attempts to solve the problem.

g Only 2 processes, P 0 and P 1

g General structure of process Pi (other process Pj)

repeat
iiiiiiiiiiiii
entry sectioniiiiiiiiiiiiicc cc

critical section
iiiiiiiiiiii
exit sectioniiiiiiiiiiiicc cc

remainder section

until false;

g Processes may share some common variables to
synchronize their actions.

Operating System Concepts, Addison-Wesley 1994 6.6 Silberschatz & Galvin 1994

Algorithm 1

g Shared variables:

- var turn: (0..1);

initially turn = 0

- turn = i ⇒ Pi can enter its critical section

g Process Pi

repeat

iiiiiiiiiiiiiiiiiiiiii
while turn ≠ i do no-op;iiiiiiiiiiiiiiiiiiiiiic
c

c
c

critical section

iiiiiiiiii
turn := j;iiiiiiiiiic
c

c
c

remainder section

until false;

g Satisfies mutual exclusion, but not progress.

Operating System Concepts, Addison-Wesley 1994 6.7 Silberschatz & Galvin 1994

Algorithm 2

g Shared variables

- var flag: array [0..1] of boolean;

initially flag[0] = flag[1] = false.

- flag[i] = true ⇒ Pi ready to enter its critical
section

g Process Pi

repeat
iiiiiiiiiiiiiiiiiiiii
flag[i] := true;
while flag[j] do no-op;iiiiiiiiiiiiiiiiiiiiicc
c
c

cc
c
c

critical section

iiiiiiiiiiiiiii
flag[i] := false;iiiiiiiiiiiiiiic
c

c
c

remainder section

until false;

g Does not satisfy the mutual exclusion require-
ment.

Operating System Concepts, Addison-Wesley 1994 6.8 Silberschatz & Galvin 1994

Algorithm 3

g Combined shared variables of algorithms 1 and 2.

g Process Pi

repeat
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
flag[i] := true;
turn := j;
while (flag[j] and turn=j) do no-op;iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c

cc
c
c
c

critical section
iiiiiiiiiiiiiii
flag[i] := false;iiiiiiiiiiiiiiic
c

c
c

remainder section

until false;

g Meets all three requirements; solves the critical-
section problem for two processes.

Operating System Concepts, Addison-Wesley 1994 6.9 Silberschatz & Galvin 1994

Bakery Algorithm − Critical section for n processes

g Before entering its critical section, process
receives a number. Holder of the smallest
number enters the critical section.

g If processes Pi and Pj receive the same number,
if i < j , then Pi is served first; else Pj is served
first.

g The numbering scheme always generates num-
bers in increasing order of enumeration.

Example: 1,2,3,3,3,3,4,5...

g Notation < ≡ lexicographical order (ticket #,
process id #)

- (a,b) < (c,d) if a < c or if a = c and b < d

- max(a0, ..., an−1) is a number, k, such that k ≥
ai for i = 0, ..., n−1

Operating System Concepts, Addison-Wesley 1994 6.10 Silberschatz & Galvin 1994

Bakery Algorithm

g Shared data

- var choosing: array [0..n−1] of boolean;

number: array [0..n−1] of integer;

- initially choosing[i] = false, for i = 0,1,..n−1

number[i] = 0, for i = 0,1,..n−1

repeat
iii
choosing[i] := true;
number[i] := max(number[0],...,number[n−1])+1;
choosing[i] := false;
for j := 0 to n−1

do begin
while choosing[j] do no-op;
while number[j] ≠ 0

and (number[j],j) < (number[i],i) do no-op;
end;iiic

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

critical section
iiiiiiiiiiiiiii
number[i] := 0;iiiiiiiiiiiiiiicc cc

remainder section
until false;

Operating System Concepts, Addison-Wesley 1994 6.11 Silberschatz & Galvin 1994

Synchronization Hardware

g Test and modify the content of a word atomically.

function Test-and-Set (var target: boolean): boolean;
begin

Test-and-Set := target;
target := true;

end;

g Mutual exclusion algorithm

- Shared data: var lock: boolean (initially false)

- Process Pi

repeat
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
while Test-and-Set(lock) do no-op;iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c

c
c

critical section
iiiiiiiiiiiii
lock := false;iiiiiiiiiiiiic
c

c
c

remainder section

until false;

Operating System Concepts, Addison-Wesley 1994 6.12 Silberschatz & Galvin 1994

Semaphore − synchronization tool that does not
require busy waiting.

Semaphore S

g integer variable

g can only be accessed via two indivisible (atomic)
operations

wait(S): S := S − 1;

if S < 0 then block(S)

signal(S): S := S + 1;

if S ≤ 0 then wakeup(S)

g block(S) − results in suspension of the process
invoking it.

g wakeup(S) − results in resumption of exactly one
process that has invoked block(S).

Operating System Concepts, Addison-Wesley 1994 6.13 Silberschatz & Galvin 1994

Example: critical section for n processes

g Shared variables

- var mutex : semaphore

- initially mutex = 1

g Process Pi

repeat
iiiiiiiiiiiii
wait(mutex);iiiiiiiiiiiiic
c

c
c

critical section
iiiiiiiiiiiiii
signal(mutex);iiiiiiiiiiiiiic
c

c
c

remainder section

until false;

Operating System Concepts, Addison-Wesley 1994 6.14 Silberschatz & Galvin 1994

Implementation of the wait and signal operations so
that they must execute atomically.

g Uniprocessor environment

- Inhibits interrupts around the code segment
implementing the wait and signal operations.

g Multiprocessor environment

- If no special hardware provided, use a correct
software solution to the critical-section prob-
lem, where the critical sections consist of the
wait and signal operations.

- Use special hardware if available, i.e., Test-
and-Set:

Operating System Concepts, Addison-Wesley 1994 6.15 Silberschatz & Galvin 1994

Implementation of wait (S) operation with the Test-
and-Set instruction:

g Shared variables

- var lock : boolean

- initially lock = false

g Code for wait(S):

while Test-and-Set(lock) do no-op;
S := S - 1;
if S < 0 then

begin
lock := false;
block(S)

end
else lock := false;

Race condition exists!

Operating System Concepts, Addison-Wesley 1994 6.16 Silberschatz & Galvin 1994

Semaphore can be used as general synchronization
tool:

g Execute B in Pj only after A executed in Pi

g Use semaphore flag initialized to 0

g Code:

Pi Pjhhhhhhhhhh hhhhhhhh
. .
. .
. .

A wait(flag)
signal(flag) B

Operating System Concepts, Addison-Wesley 1994 6.17 Silberschatz & Galvin 1994

g Deadlock − two or more processes are waiting
indefinitely for an event that can be caused by
only one of the waiting processes.

Let S and Q be two semaphores initialized to 1

P 0 P 1hhhhhhhhh hhhhhhhhh
wait(S) wait(Q)
wait(Q) wait(S)

. .

. .

. .
signal(S) signal(Q)
signal(Q) signal(S)

g Starvation − indefinite blocking

A process may never be removed from the
semaphore queue in which it is suspended.

Operating System Concepts, Addison-Wesley 1994 6.18 Silberschatz & Galvin 1994

Two types of semaphores:

g Counting semaphore − integer value can range
over an unrestricted domain.

g Binary semaphore − integer value can range only
between 0 and 1; can be simpler to implement.

g Can implement a counting semaphore S as a
binary semaphore.

- data structures:

var S1: binary-semaphore;
S2: binary-semaphore;
S3: binary-semaphore;
C: integer;

- initialization:

S1 = S3 = 1

S2 = 0

C = initial value of semaphore S.

Operating System Concepts, Addison-Wesley 1994 6.19 Silberschatz & Galvin 1994

- wait operation

wait(S3);
wait(S1);
C := C - 1;
if C < 0
then begin

signal(S1);
signal(S2);

end
else signal(S1);
signal(S3);

- signal operation

wait(S1);
C := C + 1;
if C ≤ 0 then signal(S2);
signal(S1);

Operating System Concepts, Addison-Wesley 1994 6.20 Silberschatz & Galvin 1994

Classical Problems of Synchronization

g Bounded-Buffer Problem

g Readers and Writers Problem

g Dining-Philosophers Problem

Operating System Concepts, Addison-Wesley 1994 6.21 Silberschatz & Galvin 1994

Bounded-Buffer Problem

g Shared data

type item = ...

var buffer = ...

full, empty, mutex: semaphore;

nextp, nextc: item;

full := 0; empty := n ; mutex := 1;

g Producer process

repeat
...

produce an item in nextp
...

wait(empty);
wait(mutex);

...
add nextp to buffer

...
signal(mutex);
signal(full);

until false;

Operating System Concepts, Addison-Wesley 1994 6.22 Silberschatz & Galvin 1994

g Consumer process

repeat
wait(full);
wait(mutex);

...
remove an item from buffer to nextc

...
signal(mutex);
signal(empty);

...
consume the item in nextc

...
until false;

Operating System Concepts, Addison-Wesley 1994 6.23 Silberschatz & Galvin 1994

Readers−Writers Problem

g Shared data

var mutex, wrt: semaphore (= 1);
readcount : integer (= 0);

g Writer process
wait(wrt);

...
writing is performed

...
signal(wrt);

g Reader process

wait(mutex);
readcount := readcount + 1;
if readcount = 1 then wait(wrt);

signal(mutex);
...

reading is performed
...

wait(mutex);
readcount := readcount − 1;
if readcount = 0 then signal(wrt);

signal(mutex);

Operating System Concepts, Addison-Wesley 1994 6.24 Silberschatz & Galvin 1994

Dining-Philosophers Problem

g Shared data

var chopstick: array [0..4] of semaphore;
(=1 initially)

g Philosopher i:

repeat
wait(chopstick[i]);
wait(chopstick[i+1 mod 5]);

...
eat
...

signal(chopstick[i]);
signal(chopstick[i+1 mod 5]);

...
think
...

until false;

Operating System Concepts, Addison-Wesley 1994 6.25 Silberschatz & Galvin 1994

Critical Regions − high-level synchronization con-
struct

g A shared variable v of type T, is declared as:

var v: shared T

g Variable v accessed only inside statement:

region v when B do S

where B is a Boolean expression.

While statement S is being executed, no other
process can access variable v.

g Regions referring to the same shared variable
exclude each other in time.

g When a process tries to execute the region state-
ment, the Boolean expression B is evaluated. If B
is true, statement S is executed. If it is false, the
process is delayed until B becomes true and no
other process is in the region associated with v.

Operating System Concepts, Addison-Wesley 1994 6.26 Silberschatz & Galvin 1994

Example − Bounded Buffer

g Shared variables:
var buffer: shared record

pool: array [0..n−1] of item;
count,in,out: integer;

end;

g Producer process inserts nextp into the shared
buffer

region buffer when count < n
do begin

pool[in] := nextp;
in := in+1 mod n;
count := count + 1;

end;

g Consumer process removes an item from the
shared buffer and puts it in nextc

region buffer when count > 0
do begin

nextc := pool[out];
out := out+1 mod n;
count := count − 1;

end;

Operating System Concepts, Addison-Wesley 1994 6.27 Silberschatz & Galvin 1994

Implementation of:

region x when B do S

g We associate with the shared variable x, the fol-
lowing variables:

var mutex, first-delay, second-delay: semaphore;
first-count, second-count: integer;

g Mutually exclusive access to the critical section is
provided by mutex.

g If a process cannot enter the critical section
because the Boolean expression B is false, it ini-
tially waits on the first-delay semaphore; moved
to the second-delay semaphore before it is
allowed to reevaluate B.

g Keep track of the number of processes waiting on
first-delay and second-delay, with first-count and
second-count respectively.

Operating System Concepts, Addison-Wesley 1994 6.28 Silberschatz & Galvin 1994

g The Algorithm

wait(mutex);
while not B

do begin
first-count := first-count + 1;
if second-count > 0

then signal(second-delay)
else signal(mutex);

wait(first-delay);
first-count := first-count - 1;
second-count := second-count + 1;
if first-count > 0

then signal(first-delay)
else signal(second-delay);

wait(second-delay);
second-count := second-count - 1;

end;
S;
if first-count > 0

then signal(first-delay);
else if second-count > 0

then signal(second-delay);
else signal(mutex);

g This algorithm assumes a FIFO ordering in the queue-
ing of processes for a semaphore. For an arbitrary
queueing discipline, a more complicated implementa-

tion is required.

Operating System Concepts, Addison-Wesley 1994 6.29 Silberschatz & Galvin 1994

Monitors − high-level synchronization construct that
allows the safe sharing of an abstract data type
among concurrent processes.

type monitor-name = monitor
variable declarations

procedure entry P1 (...);
begin ... end;

procedure entry P2 (...);
begin ... end;

.

.

.
procedure entry Pn (...);

begin ... end;

begin
initialization code

end.

Operating System Concepts, Addison-Wesley 1994 6.30 Silberschatz & Galvin 1994

g To allow a process to wait within the monitor, a
condition variable must be declared, as:

var x,y: condition

g Condition variable can only be used with the
operations wait and signal.

- The operation

x.wait;

means that the process invoking this operation
is suspended until another process invokes

x.signal;

- The x.signal operation resumes exactly one
suspended process. If no process is suspended,
then the signal operation has no effect.

Operating System Concepts, Addison-Wesley 1994 6.31 Silberschatz & Galvin 1994

type dining-philosophers = monitor
var state : array [0..4] of (thinking, hungry, eating);
var self : array [0..4] of condition;

procedure entry pickup (i: 0..4);
begin

state[i] := hungry;
test (i);
if state[i] ≠ eating then self[i].wait;

end;

procedure entry putdown (i: 0..4);
begin

state[i] := thinking;
test (i+4 mod 5);
test (i+1 mod 5);

end;

procedure test (k: 0..4);
begin

if state[k+4 mod 5] ≠ eating
and state[k] = hungry
and state[k+1 mod 5] ≠ eating
then begin

state[k] := eating;
self[k].signal;

end;
end;

begin
for i := 0 to 4

do state[i] := thinking;
end.

Operating System Concepts, Addison-Wesley 1994 6.32 Silberschatz & Galvin 1994

Monitor implementation using semaphores.

g Variables

var mutex: semaphore (init = 1)
next: semaphore (init = 0)
next-count: integer (init = 0)

g Each external procedure F will be replaced by

wait(mutex);
...

body of F;
...

if next-count > 0
then signal(next)
else signal(mutex);

g Mutual exclusion within a monitor is ensured.

Operating System Concepts, Addison-Wesley 1994 6.33 Silberschatz & Galvin 1994

g For each condition variable x, we have:

var x-sem: semaphore (init = 0)
x-count: integer (init = 0)

g The operation x.wait can be implemented as:

x-count := x-count + 1;
if next-count > 0

then signal(next)
else signal(mutex);

wait(x-sem);
x-count := x-count − 1;

g The operation x.signal can be implemented as:

if x-count > 0
then begin

next-count := next-count + 1;
signal(x-sem);
wait(next);
next-count := next-count − 1;

end;

Operating System Concepts, Addison-Wesley 1994 6.34 Silberschatz & Galvin 1994

g Conditional-wait construct

x.wait(c);

- c − integer expression evaluated when the wait
operation is executed.

- value of c (priority number) stored with the
name of the process that is suspended.

- when x.signal is executed, process with smal-
lest associated priority number is resumed
next.

g Must check two conditions to establish the
correctness of this system:

- User processes must always make their calls
on the monitor in a correct sequence.

- Must ensure that an uncooperative process
does not ignore the mutual-exclusion gateway
provided by the monitor, and try to access the
shared resource directly, without using the
access protocols.

Operating System Concepts, Addison-Wesley 1994 6.35 Silberschatz & Galvin 1994

Solaris 2 Operating System

g Implements a variety of locks to support multi-
tasking, multithreading (including real-time
threads), and multiprocessing.

g Uses adaptive mutexes for efficiency when pro-
tecting data from short code segments.

g Uses condition variables and readers−writers
locks when longer sections of code need access to
data.

Operating System Concepts, Addison-Wesley 1994 6.36 Silberschatz & Galvin 1994

Atomic Transactions

g Transaction − program unit that must be executed
atomically; that is, either all the operations associ-
ated with it are executed to completion, or none
are performed.

g Must preserve atomicity despite possibility of
failure.

g We are concerned here with ensuring transaction
atomicity in an environment where failures result
in the loss of information on volatile storage.

Operating System Concepts, Addison-Wesley 1994 6.37 Silberschatz & Galvin 1994

Log-Based Recovery

g Write-ahead log − all updates are recorded on the
log, which is kept in stable storage; log has fol-
lowing fields:

- transaction name

- data item name, old value, new value

The log has a record of <Ti starts>, and either
<Ti commits> if the transactions commits, or <Ti

aborts> if the transaction aborts.

g Recovery algorithm uses two procedures:

- undo(Ti) − restores value of all data updated
by transaction Ti to the old values. It is
invoked if the log contains record <Ti starts>,
but not <Ti commits>.

- redo(Ti) − sets value of all data updated by
transaction Ti to the new values. It is invoked
if the log contains both <Ti starts> and <Ti

commits>.

Operating System Concepts, Addison-Wesley 1994 6.38 Silberschatz & Galvin 1994

Checkpoints − reduce recovery overhead

1. Output all log records currently residing in
volatile storage onto stable storage.

2. Output all modified data residing in volatile
storage to stable storage.

3. Output log record <checkpoint> onto stable
storage.

g Recovery routine examines log to determine the
most recent transaction Ti that started executing
before the most recent checkpoint took place.

- Search log backward for first <checkpoint>
record.

- Find subsequent <Ti start> record.

g redo and undo operations need to be applied to
only transaction Ti and all transactions Tj that
started executing after transaction Ti .

Operating System Concepts, Addison-Wesley 1994 6.39 Silberschatz & Galvin 1994

Concurrent Atomic Transactions

g Serial schedule − the transactions are executed
sequentially in some order.

g Example of a serial schedule in which T 0 is fol-
lowed by T 1:

T 0 T 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)cc

c
c
c
c
c
c
c
c
c
c
c

Operating System Concepts, Addison-Wesley 1994 6.40 Silberschatz & Galvin 1994

g Conflicting operations − Oi and Oj conflict if
they access the same data item, and at least one of
these operations is a write operation.

g Conflict serializable schedule − schedule that can
be transformed into a serial schedule by a series
of swaps of nonconflicting operations.

g Example of a concurrent serializable schedule:

T 0 T 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)cc

c
c
c
c
c
c
c
c
c
c
c

Operating System Concepts, Addison-Wesley 1994 6.41 Silberschatz & Galvin 1994

g Locking protocol governs how locks are acquired
and released; data item can be locked in following
modes:

- Shared: If Ti has obtained a shared-mode lock
on data item Q, then Ti can read this item, but
it cannot write Q.

- Exclusive: If Ti has obtained an exclusive-
mode lock on data item Q, then Ti can both
read and write Q.

g Two-phase locking protocol

- Growing phase: A transaction may obtain
locks, but may not release any lock.

- Shrinking phase: A transaction may release
locks, but may not obtain any new locks.

g The two-phase locking protocol ensures conflict
serializability, but does not ensure freedom from
deadlock.

Operating System Concepts, Addison-Wesley 1994 6.42 Silberschatz & Galvin 1994

g Timestamp-ordering scheme − transaction order-
ing protocol for determining serializability order.

- With each transaction Ti in the system, associ-
ate a unique fixed timestamp, denoted by
TS(Ti).

- If Ti has been assigned timestamp TS(Ti), and
a new transaction Tj enters the system, then
TS(Ti) < TS(Tj).

g Implement by assigning two timestamp values to
each data item Q .

- W-timestamp(Q) − denotes largest timestamp
of any transaction that executed write(Q) suc-
cessfully.

- R-timestamp(Q) − denotes largest timestamp
of any transaction that executed read(Q) suc-
cessfully.

Operating System Concepts, Addison-Wesley 1994 6.43 Silberschatz & Galvin 1994

g Example of a schedule possible under the time-
stamp protocol:

T 2 T 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
read(B)

read(B)
write(B)

read(A)
read(A)
write(A)cc

c
c
c
c
c
c
c
c

g There are schedules that are possible under the
two-phase locking protocol but are not possible
under the timestamp protocol, and vice versa.

g The timestamp-ordering protocol ensures conflict
serializability; conflicting operations are pro-
cessed in timestamp order.

Operating System Concepts, Addison-Wesley 1994 6.44 Silberschatz & Galvin 1994

CHAPTER 7: DEADLOCKS

g System Model

g Deadlock Characterization

g Methods for Handling Deadlocks

g Deadlock Prevention

g Deadlock Avoidance

g Deadlock Detection

g Recovery from Deadlock

g Combined Approach to Deadlock Handling

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

The Deadlock Problem

g A set of blocked processes each holding a
resource and waiting to acquire a resource held by
another process in the set.

g Example

- System has 2 tape drives.

- P 1 and P 2 each hold one tape drive and each
needs another one.

g Example

semaphores A and B , initialized to 1

P 0 P 1hhhhhhh hhhhhhh
wait (A) wait (B)
wait (B) wait (A)

Operating System Concepts, Addison-Wesley 1994 7.1 Silberschatz & Galvin 1994

g Example: bridge crossing

- Traffic only in one direction.

- Each section of a bridge can be viewed as a
resource.

- If a deadlock occurs, it can be resolved if one
car backs up (preempt resources and rollback).

- Several cars may have to be backed up if a
deadlock occurs.

- Starvation is possible.

Operating System Concepts, Addison-Wesley 1994 7.2 Silberschatz & Galvin 1994

System Model

g Resource types R 1, R 2, ..., Rm −1

CPU cycles, memory space, I/O devices

g Each resource type Ri has Wi instances.

g Each process utilizes a resource as follows:

- request

- use

- release

Operating System Concepts, Addison-Wesley 1994 7.3 Silberschatz & Galvin 1994

Deadlock Characterization − deadlock can arise if
four conditions hold simultaneously.

g Mutual exclusion: only one process at a time can
use a resource.

g Hold and wait: a process holding at least one
resource is waiting to acquire additional resources
held by other processes.

g No preemption: a resource can be released only
voluntarily by the process holding it, after that
process has completed its task.

g Circular wait: there exists a set {P 0, P 1, ..., Pn }
of waiting processes such that P 0 is waiting for a
resource that is held by P 1, P 1 is waiting for a
resource that is held by P 2, ..., Pn −1 is waiting for
a resource that is held by Pn , and Pn is waiting
for a resource that is held by P 0.

Operating System Concepts, Addison-Wesley 1994 7.4 Silberschatz & Galvin 1994

Resource-Allocation Graph − a set of vertices V and
a set of edges E.

g V is partitioned into two types:

- P = {P 1, P 2, ..., Pn }, the set consisting of all
the processes in the system.

- R = {R 1, R 2, ..., Rm }, the set consisting of all
resource types in the system.

g request edge − directed edge Pi → Rj

g assignment edge − directed edge Rj → Pi

Operating System Concepts, Addison-Wesley 1994 7.5 Silberschatz & Galvin 1994

Example

g Process

g Resource type with 4 instances

g Pi requests instance of Rj

P
i

R
j

g Pi is holding an instance of Rj

P
i

R
j

Operating System Concepts, Addison-Wesley 1994 7.6 Silberschatz & Galvin 1994

g Example of a resource-allocation graph with no
cycles.

P 1

R 3

R 4

R 2

R 1

P 3
P 2

Operating System Concepts, Addison-Wesley 1994 7.7 Silberschatz & Galvin 1994

g Example of a resource-allocation graph with a
cycle.

P 4

R 1

R 2

P 1 P 3

P 2

Operating System Concepts, Addison-Wesley 1994 7.8 Silberschatz & Galvin 1994

g If graph contains no cycles ⇒ no deadlock.

g If graph contains a cycle ⇒

- if only one instance per resource type, then
deadlock.

- if several instances per resource type, possibil-
ity of deadlock.

Operating System Concepts, Addison-Wesley 1994 7.9 Silberschatz & Galvin 1994

Methods for Handling Deadlocks

g Ensure that the system will never enter a deadlock
state.

g Allow the system to enter a deadlock state and
then recover.

g Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX.

Operating System Concepts, Addison-Wesley 1994 7.10 Silberschatz & Galvin 1994

Deadlock Prevention − restrain the ways resource
requests can be made.

g Mutual Exclusion − not required for sharable
resources; must hold for nonsharable resources.

g Hold and Wait − must guarantee that whenever a
process requests a resource, it does not hold any
other resources.

- Require process to request and be allocated all
its resources before it begins execution, or
allow process to request resources only when
the process has none.

- Low resource utilization; starvation possible.

Operating System Concepts, Addison-Wesley 1994 7.11 Silberschatz & Galvin 1994

g No Preemption −

- If a process that is holding some resources
requests another resource that cannot be
immediately allocated to it, then all resources
currently being held are released.

- Preempted resources are added to the list of
resources for which the process is waiting.

- Process will be restarted only when it can
regain its old resources, as well as the new
ones that it is requesting.

g Circular Wait − impose a total ordering of all
resource types, and require that each process
requests resources in an increasing order of
enumeration.

Operating System Concepts, Addison-Wesley 1994 7.12 Silberschatz & Galvin 1994

Deadlock Avoidance − requires that the system has
some additional a priori information available.

g Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need.

g The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition.

g Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes.

Operating System Concepts, Addison-Wesley 1994 7.13 Silberschatz & Galvin 1994

Safe State − when a process requests an available
resource, system must decide if immediate allocation
leaves the system in a safe state.

g System is in safe state if there exists a safe
sequence of all processes.

g Sequence <P 1, P 2, ..., Pn > is safe if for each Pi ,
the resources that Pi can still request can be
satisfied by the currently available resources plus
the resources held by all the Pj , with j < i.

- If Pi resource needs are not immediately avail-
able, then Pi can wait until all Pj have
finished.

- When Pj is finished, Pi can obtain needed
resources, execute, return allocated resources,
and terminate.

- When Pi terminates, Pi +1 can obtain its needed
resources, and so on.

Operating System Concepts, Addison-Wesley 1994 7.14 Silberschatz & Galvin 1994

g If a system is in safe state ⇒ no deadlocks.

g If a system is in unsafe state ⇒ possibility of
deadlock.

g Avoidance ⇒ ensure that a system will never
enter an unsafe state.

Operating System Concepts, Addison-Wesley 1994 7.15 Silberschatz & Galvin 1994

Resource-Allocation Graph Algorithm

g Claim edge Pi → Rj indicates that process Pi

may request resource Rj ; represented by a dashed
line.

g Claim edge converts to request edge when a pro-
cess requests a resource.

g When a resource is released by a process, assign-
ment edge reconverts to a claim edge.

g Resources must be claimed a priori in the system.

Operating System Concepts, Addison-Wesley 1994 7.16 Silberschatz & Galvin 1994

Banker’s Algorithm

g Multiple resource types.

g Each process must a priori claim maximum use.

g When a process requests a resource it may have
to wait.

g When a process gets all its resources it must
return them in a finite amount of time.

Operating System Concepts, Addison-Wesley 1994 7.17 Silberschatz & Galvin 1994

g Data Structures for the Banker’s algorithm where
n = number of processes, and m = number of
resource types.

- Available: Vector of length m. If Available[j]
= k, there are k instances of resource type Rj

available.

- Max: n × m matrix. If Max[i,j] = k, then pro-
cess Pi may request at most k instances of
resource type Rj .

- Allocation: n × m matrix. If Allocation[i,j] = k,
then Pi is currently allocated k instances of Rj .

- Need: n × m matrix. If Need[i,j] = k, then Pi

may need k more instances of Rj to complete
its task.

Need[i,j] = Max[i,j] − Allocation[i,j].

Operating System Concepts, Addison-Wesley 1994 7.18 Silberschatz & Galvin 1994

Safety Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively.

Initialize:
Work := Available

Finish[i] := false for i = 1, 2, ..., n.

2. Find an i such that both:

a. Finish[i] = false

b. Needi ≤ Work
If no such i exists, go to step 4.

3. Work := Work + Allocationi

Finish[i] := true
go to step 2.

4. If Finish[i] = true for all i, then the system is in
a safe state.

May require an order of m × n 2 operations to
decide whether a state is safe.

Operating System Concepts, Addison-Wesley 1994 7.19 Silberschatz & Galvin 1994

Resource-Request Algorithm for process Pi

Requesti = request vector for process Pi .

If Requesti [j] = k , then process Pi wants k
instances of resource type Rj .

1. If Requesti ≤ Needi , go to step 2. Otherwise,
raise error condition, since process has
exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Other-
wise, Pi must wait, since resources are not
available.

3. Pretend to allocate requested resources to Pi

by modifying the state as follows:

Available := Available − Requesti ;
Allocationi := Allocationi + Requesti ;
Needi := Needi − Requesti ;

- If safe ⇒ the resources are allocated to Pi .

- If unsafe ⇒ Pi must wait, and the old
resource-allocation state is restored.

Operating System Concepts, Addison-Wesley 1994 7.20 Silberschatz & Galvin 1994

Example of Banker’s algorithm

g 5 processes P 0 through P 4; 3 resource types A
(10 instances), B (5 instances), and C (7
instances).

g Snapshot at time T 0:

Allocation Max Available Needhhhhhhhhh hhhhh hhhhhhhh hhhhh

A B C A B C A B C A B C
P 0 0 1 0 7 5 3 3 3 2 7 4 3
P 1 2 0 0 3 2 2 1 2 2
P 2 3 0 2 9 0 2 6 0 0
P 3 2 1 1 2 2 2 0 1 1
P 4 0 0 2 4 3 3 4 3 1

g Sequence <P 1, P 3, P 4, P 2, P 0> satisfies safety
criteria.

Operating System Concepts, Addison-Wesley 1994 7.21 Silberschatz & Galvin 1994

g P 1 now requests resources.

Request 1 = (1,0,2).

- Check that Request 1 ≤ Available (that is,
(1,0,2) ≤ (3,3,2)) ⇒ true.

Allocation Need Availablehhhhhhhhh hhhhh hhhhhhhh

A B C A B C A B C
P 0 0 1 0 7 4 3 2 3 0
P 1 3 0 2 0 2 0
P 2 3 0 2 6 0 0
P 3 2 1 1 0 1 1
P 4 0 0 2 4 3 1

- Executing safety algorithm shows that
sequence <P 1, P 3, P 4, P 0, P 2> satisfies safety
requirement.

g Can request for (3,3,0) by P 4 be granted?

g Can request for (0,2,0) by P 0 be granted?

Operating System Concepts, Addison-Wesley 1994 7.22 Silberschatz & Galvin 1994

Deadlock Detection

g Allow system to enter deadlock state

g Detection algorithm

g Recovery scheme

Operating System Concepts, Addison-Wesley 1994 7.23 Silberschatz & Galvin 1994

Single Instance of Each Resource Type

g Maintain wait-for graph

- Nodes are processes.

- Pi → Pj if Pi is waiting for Pj .

g Periodically invoke an algorithm that searches for
a cycle in the graph.

g An algorithm to detect a cycle in a graph requires
an order of n 2 operations, where n is the number
of vertices in the graph.

Operating System Concepts, Addison-Wesley 1994 7.24 Silberschatz & Galvin 1994

Several Instances of a Resource Type

g Data structures

- Available: A vector of length m indicates the
number of available resources of each type.

- Allocation: An n × m matrix defines the
number of resources of each type currently
allocated to each process.

- Request: An n × m matrix indicates the current
request of each process. If Request[i,j] = k,
then process Pi is requesting k more instances
of resource type Rj .

Operating System Concepts, Addison-Wesley 1994 7.25 Silberschatz & Galvin 1994

Detection Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively. Initialize:

- Work := Available.

- For i = 1, 2, ..., n, if Allocationi ≠, then
Finish[i] := false; otherwise, Finish[i] :=
true.

2. Find an index i such that both:

a. Finish[i] = false.

b. Requesti ≤ Work.
If no such i exists, go to step 4.

3. Work := Work + Allocationi

Finish[i] := true
go to step 2.

4. If Finish[i] = false, for some i, 1 ≤ i ≤ n, then
the system is in a deadlock state. Moreover, if
Finish[i] = false, then Pi is deadlocked.

g Algorithm requires an order of m × n 2 operations
to detect whether the system is in a deadlocked
state.

Operating System Concepts, Addison-Wesley 1994 7.26 Silberschatz & Galvin 1994

Example of Detection algorithm

g Five processes P 0 through P 4; three resource
types A (7 instances), B (2 instances), and C (6
instances).

g Snapshot at time T 0:

Allocation Request Availablehhhhhhhhh hhhhhhh hhhhhhhh

A B C A B C A B C
P 0 0 1 0 0 0 0 0 0 0
P 1 2 0 0 2 0 2
P 2 3 0 3 0 0 0
P 3 2 1 1 1 0 0
P 4 0 0 2 0 0 2

g Sequence <P 0, P 2, P 3, P 1, P 4> will result in
Finish[i] = true for all i.

Operating System Concepts, Addison-Wesley 1994 7.27 Silberschatz & Galvin 1994

g P 2 requests an additional instance of type C.

Requesthhhhhhh

A B C
P 0 0 0 0
P 1 2 0 2
P 2 0 0 1
P 3 1 0 0
P 4 0 0 2

g State of system?

- Can reclaim resources held by process P 0, but
insufficient resources to fulfill other processes’
requests.

- Deadlock exists, consisting of processes P 1,
P 2, P 3, and P 4.

Operating System Concepts, Addison-Wesley 1994 7.28 Silberschatz & Galvin 1994

Detection-Algorithm Usage

g When, and how often, to invoke depends on:

- How often a deadlock is likely to occur?

- How many processes will need to be rolled
back?
b one for each disjoint cycle

g If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and so
we would not be able to tell which of the many
deadlocked processes ‘‘caused’’ the deadlock.

Operating System Concepts, Addison-Wesley 1994 7.29 Silberschatz & Galvin 1994

Recovery from Deadlock

g Process termination

- Abort all deadlocked processes.

- Abort one process at a time until the deadlock
cycle is eliminated.

- In which order should we choose to abort?

b Priority of the process.

b How long process has computed, and how
much longer to completion.

b Resources the process has used.

b Resources process needs to complete.

b How many processes will need to be ter-
minated.

b Is process interactive or batch?

Operating System Concepts, Addison-Wesley 1994 7.30 Silberschatz & Galvin 1994

g Resource Preemption

- Selecting a victim − minimize cost.

- Rollback − return to some safe state, restart
process from that state.

- Starvation − same process may always be
picked as victim; include number of rollback in
cost factor.

Operating System Concepts, Addison-Wesley 1994 7.31 Silberschatz & Galvin 1994

Combined Approach to Deadlock Handling

g Combine the three basic approaches (prevention,
avoidance, and detection), allowing the use of the
optimal approach for each class of resources in
the system.

g Partition resources into hierarchically ordered
classes.

g Use most appropriate technique for handling
deadlocks within each class.

Operating System Concepts, Addison-Wesley 1994 7.32 Silberschatz & Galvin 1994

CHAPTER 8: MEMORY MANAGEMENT

g Background

g Logical versus Physical Address Space

g Swapping

g Contiguous Allocation

g Paging

g Segmentation

g Segmentation with Paging

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Background

g Program must be brought into memory and
placed within a process for it to be executed.

g Input queue − collection of processes on the disk
that are waiting to be brought into memory for
execution.

g User programs go through several steps before
being executed.

Operating System Concepts, Addison-Wesley 1994 8.1 Silberschatz & Galvin 1994

Address binding of instructions and data to memory
addresses can happen at three stages:

g Compile time: If memory location known a
priori, absolute code can be generated; must
recompile code if starting location changes.

g Load time: Must generate relocatable code if
memory location is not known at compile time.

g Execution time: Binding delayed until run time
if the process can be moved during its execution
from one memory segment to another. Need
hardware support for address maps (e.g., base and
limit registers).

Operating System Concepts, Addison-Wesley 1994 8.2 Silberschatz & Galvin 1994

g Dynamic Loading − routine is not loaded until it
is called.

- Better memory-space utilization; unused rou-
tine is never loaded.

- Useful when large amounts of code are needed
to handle infrequently occurring cases.

- No special support from the operating system
is required; implemented through program
design.

g Dynamic Linking − linking postponed until exe-
cution time.

- Small piece of code, stub, used to locate the
appropriate memory-resident library routine.

- Stub replaces itself with the address of the rou-
tine, and executes the routine.

- Operating system needed to check if routine is
in processes’ memory address.

Operating System Concepts, Addison-Wesley 1994 8.3 Silberschatz & Galvin 1994

g Overlays − keep in memory only those instruc-
tions and data that are needed at any given time.

- Needed when process is larger than amount of
memory allocated to it.

- Implemented by user, no special support
needed from operating system; programming
design of overlay structure is complex.

Operating System Concepts, Addison-Wesley 1994 8.4 Silberschatz & Galvin 1994

Logical versus Physical Address Space

g The concept of a logical address space that is
bound to a separate physical address space is cen-
tral to proper memory management.

- Logical address − generated by the CPU; also
referred to as virtual address.

- Physical address − address seen by the
memory unit.

g Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme.

Operating System Concepts, Addison-Wesley 1994 8.5 Silberschatz & Galvin 1994

Memory-management unit (MMU) − hardware dev-
ice that maps virtual to physical address.

g In MMU scheme, the value in the relocation regis-
ter is added to every address generated by a user
process at the time it is sent to memory.

g The user program deals with logical addresses; it
never sees the real physical addresses.

Operating System Concepts, Addison-Wesley 1994 8.6 Silberschatz & Galvin 1994

Swapping

g A process can be swapped temporarily out of
memory to a backing store, and then brought
back into memory for continued execution.

g Backing store − fast disk large enough to accom-
modate copies of all memory images for all users;
must provide direct access to these memory
images.

g Roll out, roll in − swapping variant used for
priority-based scheduling algorithms; lower-
priority process is swapped out so higher-priority
process can be loaded and executed.

g Major part of swap time is transfer time; total
transfer time is directly proportional to the
amount of memory swapped.

g Modified versions of swapping are found on
many systems, i.e., UNIX and Microsoft Win-
dows.

Operating System Concepts, Addison-Wesley 1994 8.7 Silberschatz & Galvin 1994

g Schematic view of swapping

disk

memory

B

B

A

A

Operating System Concepts, Addison-Wesley 1994 8.8 Silberschatz & Galvin 1994

Contiguous Allocation

g Main memory usually into two partitions:

- Resident operating system, usually held in low
memory with interrupt vector.

- User processes then held in high memory.

g Single-partition allocation

- Relocation-register scheme used to protect user
processes from each other, and from changing
operating-system code and data.

- Relocation register contains value of smallest
physical address; limit register contains range
of logical addresses − each logical address
must be less than the limit register.

Operating System Concepts, Addison-Wesley 1994 8.9 Silberschatz & Galvin 1994

g Multiple-partition allocation

- Hole − block of available memory; holes of
various size are scattered throughout memory.

- When a process arrives, it is allocated memory
from a hole large enough to accommodate it.

g Example

process 9process 9

process 2process 2process 2process 2

process 8

process 5process 5process 5process 5

process 10

OS OS OS OS

⇒ ⇒ ⇒

Operating system maintains information about:

- allocated partitions

- free partitions (hole)

Operating System Concepts, Addison-Wesley 1994 8.10 Silberschatz & Galvin 1994

g Dynamic storage-allocation problem − how to
satisfy a request of size n from a list of free holes.

- First-fit: Allocate the first hole that is big
enough.

- Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered
by size. Produces the smallest leftover hole.

- Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

g First-fit and best-fit better than worst-fit in terms
of speed and storage utilization.

Operating System Concepts, Addison-Wesley 1994 8.11 Silberschatz & Galvin 1994

g External fragmentation − total memory space
exists to satisfy a request, but it is not contiguous.

g Internal fragmentation − allocated memory may
be slightly larger than requested memory; differ-
ence between these two numbers is memory inter-
nal to a partition, but not being used.

g Reduce external fragmentation by compaction.

- Shuffle memory contents to place all free
memory together in one large block.

- Compaction is possible only if relocation is
dynamic, and is done at execution time.

- I/O problem

b Latch job in memory while it is involved in
I/O.

b Do I/O only into OS buffers.

Operating System Concepts, Addison-Wesley 1994 8.12 Silberschatz & Galvin 1994

Paging − logical address space of a process can be
noncontiguous; process is allocated physical
memory wherever the latter is available.

g Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 8192 bytes).

g Divide logical memory into blocks of same size
called pages.

g Keep track of all free frames.

g To run a program of size n pages, need to find n
free frames and load program.

g Set up a page table to translate logical to physical
addresses.

g Internal fragmentation.

Operating System Concepts, Addison-Wesley 1994 8.13 Silberschatz & Galvin 1994

g Address generated by CPU is divided into:

- Page number (p) − used as an index into a
page table which contains base address of each
page in physical memory.

- Page offset (d) − combined with base address
to define the physical memory address that is
sent to the memory unit.

dpCPU

address
logical

p

f

df

page table

address
physical
memory

physical

Operating System Concepts, Addison-Wesley 1994 8.14 Silberschatz & Galvin 1994

g Separation between user’s view of memory and
actual physical memory reconciled by address-
translation hardware; logical addresses are
translated into physical addresses.

memory
physical

frame number

table
page

memory
logical

3

2

1

0

7

3

4

1

7

6

5

4

3

2

1

0

page 3

page 2

page 1

page 0

page 2

page 0

page 3

page 1

Operating System Concepts, Addison-Wesley 1994 8.15 Silberschatz & Galvin 1994

Implementation of page table

g Page table is kept in main memory.

g Page-table base register (PTBR) points to the
page table.

g Page-table length register (PTLR) indicates size
of the page table.

g In this scheme every data/instruction access
requires two memory accesses. One for the page
table and one for the data/instruction.

g The two memory access problem can be solved
by the use of a special fast-lookup hardware
cache called associative registers or translation
look-aside buffers (TLBs).

Operating System Concepts, Addison-Wesley 1994 8.16 Silberschatz & Galvin 1994

g Associative registers − parallel search

Page # Frame #iiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiic
c
c
c

cc
c
c
c
c

c
c
c
c

Address translation (A′, A′′)

- If A′ in associative register, get frame # out.

- Otherwise get frame # from page table in
memory.

g Hit ratio − percentage of times that a page
number is found in the associative registers; ratio
related to number of associative registers.

g Effective Access Time (EAT)

- associative lookup = ε time unit

- memory cycle time - 1 microsecond

- hit ratio = α

EAT= (1 + ε) α + (2 + ε) (1 - α)

= 2 + ε - α

Operating System Concepts, Addison-Wesley 1994 8.17 Silberschatz & Galvin 1994

g Memory protection implemented by associating
protection bits with each frame.

g Valid−invalid bit attached to each entry in the
page table:

- ‘‘valid’’ indicates that the associated page is in
the process’ logical address space, and is thus a
legal page.

- ‘‘invalid’’ indicates that the page is not in the
process’ logical address space.

Operating System Concepts, Addison-Wesley 1994 8.18 Silberschatz & Galvin 1994

Multilevel Paging − partitioning the page table
allows the operating system to leave partitions
unused until a process needs them.

g A two-level page-table scheme

outer-page

1

500

100

708

929

900

page 929

page 900

page 708

page 500

page 100

page 1

page 0

page table
page of

table

page table

memory

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

Operating System Concepts, Addison-Wesley 1994 8.19 Silberschatz & Galvin 1994

g A logical address (on 32-bit machine with 4K
page size) is divided into:

- a page number consisting of 20 bits.

- a page offset consisting of 12 bits.

g Since the page table is paged, the page number is
further divided into:

- a 10-bit page number.

- a 10-bit page offset.

g Thus, a logical address is as follows:

page number page offsetiiiiiiiiiiiiiiiiiiiiiiiii
p 2 dp 1cc cc cc

c
c

cciiiiiiiiiiiiiiiiiiiiiiiii
10 10 12

where p 1 is an index into the outer page table,
and p 2 is the displacement within the page of the
outer page table.

Operating System Concepts, Addison-Wesley 1994 8.20 Silberschatz & Galvin 1994

g Thus, a logical address is as follows:

page number page offsetiiiiiiiiiiiiiiiiiiiiiiiii
p 2 dp 1cc cc cc

c
c

cciiiiiiiiiiiiiiiiiiiiiiiii
10 10 12

g Address-translation scheme for a two-level 32-bit
paging architecture

p2p1 d

logical address

d

page
desired

p2

page table
page of

outer-page

p1

table

Operating System Concepts, Addison-Wesley 1994 8.21 Silberschatz & Galvin 1994

g Multilevel paging and performance

- Since each level is stored as a separate table in
memory, converting a logical address to a phy-
sical one may take four memory accesses.

- Even though time needed for one memory
access is quintupled, caching permits perfor-
mance to remain reasonable.

- Cache hit rate of 98 percent yields:

effective access time = 0.98 × 120 + 0.02 × 520
= 128 nanoseconds

which is only a 28 percent slowdown in
memory access time.

Operating System Concepts, Addison-Wesley 1994 8.22 Silberschatz & Galvin 1994

Inverted Page Table − one entry for each real page
of memory; entry consists of the virtual address of
the page stored in that real memory location, with
information about the process that owns that page.

g Decreases memory needed to store each page
table, but increases time needed to search the
table when a page reference occurs.

g Use hash table to limit the search to one — or at
most a few — page-table entries.

i

isearch

pid dpCPU

address
logical

d

address
physical
memory

physical

pid p

page table

Operating System Concepts, Addison-Wesley 1994 8.23 Silberschatz & Galvin 1994

Shared pages

g One copy of read-only (reentrant) code shared
among processes (i.e., text editors, compilers,
window systems).

data 3
2

1
data 1

process P2

process P3

for P3

for P2

10

9

8

ed 3

ed 2

ed 1

data 3

data 1

data 27

6

5

4

3

2

1

0

process P1

for P1

page table

ed 3

ed 2

ed 1

6

3

4

page table

ed 3

ed 2

ed 1

6

3
4

page tabledata 2

ed 3

ed 2

ed 1

6

7

3

4

Operating System Concepts, Addison-Wesley 1994 8.24 Silberschatz & Galvin 1994

Segmentation − memory-management scheme that
supports user view of memory.

g A program is a collection of segments. A seg-
ment is a logical unit such as:

main program
procedure
function
local variables, global variables
common block
stack
symbol table, arrays

g Example

memory
physicaluser space

4
3

2

1

1

2

3

4

Operating System Concepts, Addison-Wesley 1994 8.25 Silberschatz & Galvin 1994

g Logical address consists of a two tuple:

<segment-number, offset>.

g Segment table − maps two-dimensional user-
defined addresses into one-dimensional physical
addresses; each entry of table has:

- base − contains the starting physical address
where the segments reside in memory.

- limit − specifies the length of the segment.

g Segment-table base register (STBR) points to the
segment table’s location in memory.

g Segment-table length register (STLR) indicates
number of segments used by a program;

segment number s is legal if s < STLR.

Operating System Concepts, Addison-Wesley 1994 8.26 Silberschatz & Galvin 1994

Relocation - dynamic

- by segment table

Sharing - shared segments

- same segment number

Protection With each entry in segment table
associate:

- validation bit = 0 ⇒ illegal segment

- read/write/execute privileges

Allocation - first fit/best fit

- external fragmentation

Operating System Concepts, Addison-Wesley 1994 8.27 Silberschatz & Galvin 1994

g Protection bits associated with segments; code
sharing occurs at segment level.

g Since segments vary in length, memory allocation
is a dynamic storage-allocation problem.

process P2

8850

memory
physical

editor

data 1

process P2

data 2
98553

90003

72773

68348

43062

process P1

1
0

logical memory

segment 1

data 1

segment table

4306225286

baselimit

segment 0

editor

1
0

process P1

logical memory

segment 1

data 1

segment table

683484425
4306225286

baselimit

segment 0

editor

Operating System Concepts, Addison-Wesley 1994 8.28 Silberschatz & Galvin 1994

Segmentation with Paging

g The MULTICS system solved problems of exter-
nal fragmentation and lengthy search times by
paging the segments.

STBR

trap

p d′

segment table

base
page−table

length

memory

yes

segment
no

d

+

address
logical

ds

≥

d′

segment s
page table for

f f

physical
address

+

Solution differs from pure segmentation in that
the segment-table entry contains not the base
address of the segment, but rather the base
address of a page table for this segment.

Operating System Concepts, Addison-Wesley 1994 8.29 Silberschatz & Galvin 1994

g The Intel 386 uses segmentation with paging for
memory management, with a two-level paging
scheme.

page tablepage directory

page frame

segment register

directory entry

physical address

address

segment descriptor

descriptor table

offsetselector

03216
logical

address
offsetpagedirectorylinear

+

page table entry

Operating System Concepts, Addison-Wesley 1994 8.30 Silberschatz & Galvin 1994

Considerations in comparing memory-management
strategies:

g Hardware support

g Performance

g Fragmentation

g Relocation

g Swapping

g Sharing

g Protection

Operating System Concepts, Addison-Wesley 1994 8.31 Silberschatz & Galvin 1994

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

