
OPERATING SYSTEM CONCEPTS

Avi Silberschatz
Department of Computer Sciences

University of Texas at Austin

Peter Galvin
Department of Computer Science

Brown University

Copyright 1994 Avi Silberschatz & Peter Galvin

CHAPTER 1: INTRODUCTION

g What is an operating system?

g Early Systems

g Simple Batch Systems

g Multiprogramming Batched Systems

g Time-Sharing Systems

g Personal-Computer Systems

g Parallel Systems

g Distributed Systems

g Real-Time Systems

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Operating system − a program that acts as an
intermediary between a user of a computer and the
computer hardware.

Operating system goals:

g Execute user programs and make solving user
problems easier.

g Make the computer system convenient to use.

g Use the computer hardware in an efficient
manner.

Operating System Concepts, Addison-Wesley 1994 1.1 Silberschatz & Galvin 1994

Computer System Components

1. Hardware − provides basic computing resources
(CPU, memory, I/O devices).

2. Operating system − controls and coordinates the
use of the hardware among the various applica-
tion programs for the various users.

3. Applications programs − define the ways in
which the system resources are used to solve the
computing problems of the users (compilers,
database systems, video games, business pro-
grams).

4. Users (people, machines, other computers).

Operating System Concepts, Addison-Wesley 1994 1.2 Silberschatz & Galvin 1994

...

assembler

2
user

editor
text

3
user

compiler

1
user user

n

... database
system

Application Programs

Operating System

Computer
Hardware

Operating System Concepts, Addison-Wesley 1994 1.3 Silberschatz & Galvin 1994

Operating System Definitions

g Resource allocator − manages and allocates
resources.

g Control program − controls the execution of user
programs and operation of I/O devices.

g Kernel − the one program running at all times (all
else being application programs).

Operating System Concepts, Addison-Wesley 1994 1.4 Silberschatz & Galvin 1994

Early Systems − bare machine (early 1950s)

g Structure

- Large machines run from console

- Single user system

- Programmer/User as operator

- Paper tape or punched cards

g Early Software

- Assemblers

- Loaders

- Linkers

- Libraries of common subroutines

- Compilers

- Device drivers

g Secure

g Inefficient use of expensive resources

- Low CPU utilization

- Significant amount of setup time

Operating System Concepts, Addison-Wesley 1994 1.5 Silberschatz & Galvin 1994

Simple Batch Systems

g Hire an operator

g User ≠ operator

g Add a card reader

g Reduce setup time by batching similar jobs

g Automatic job sequencing − automatically
transfers control from one job to another. First
rudimentary operating system.

g Resident monitor

- initial control in monitor

- control transfers to job

- when job completes control transfers back to
monitor

Operating System Concepts, Addison-Wesley 1994 1.6 Silberschatz & Galvin 1994

Problems:

1) How does the monitor know about the nature of
the job (e.g., Fortran versus Assembly) or which
program to execute?

2) How does the monitor distinguish

a) job from job?

b) data from program?

Solution: introduce control cards

Operating System Concepts, Addison-Wesley 1994 1.7 Silberschatz & Galvin 1994

Control Cards

g Special cards that tell the resident monitor which
programs to run.

$JOB
$FTN
$RUN
$DATA
$END

g Special characters distinguish control cards from
data or program cards:

$ in column 1

// in column 1 and 2

7-9 in column 1

g Parts of resident monitor

- Control card interpreter − responsible for read-
ing and carrying out instructions on the cards.

- Loader − loads systems programs and applica-
tions programs into memory.

- Device drivers − know special characteristics
and properties for each of the system’s I/O de-
vices.

Operating System Concepts, Addison-Wesley 1994 1.8 Silberschatz & Galvin 1994

g Problem: Slow Performance − since I/O and CPU

could not overlap, and card reader very slow.

g Solution: Off-line operation − speed up computa-
tion by loading jobs into memory from tapes and
card reading and line printing done off-line.

computer
main

system tapes

card
reader

printer
processor
satellite

Operating System Concepts, Addison-Wesley 1994 1.9 Silberschatz & Galvin 1994

g Advantage of off-line operation − main computer
not constrained by the speed of the card readers
and line printers, but only by the speed of faster
magnetic tape units.

g No changes need to be made to the application
programs to change from direct to off-line I/O

operation.

g Real gain − possibility of using multiple reader-
to-tape and tape-to-printer systems for one CPU.

Operating System Concepts, Addison-Wesley 1994 1.10 Silberschatz & Galvin 1994

Spooling − overlap the I/O of one job with the com-
putation of another job.

disk

CPUreader
card printer

g While executing one job, the operating system:

- reads the next job from the card reader into a
storage area on the disk (job queue).

- outputs the printout of previous job from disk
to the line printer.

g Job pool − data structure that allows the operating
system to select which job to run next, in order to
increase CPU utilization.

Operating System Concepts, Addison-Wesley 1994 1.11 Silberschatz & Galvin 1994

Multiprogrammed Batch Systems − several jobs are
kept in main memory at the same time, and the CPU

is multiplied among them.

OS

u1

u2

u3

u4

L read ()

u2u1

CPU I/O

OS

L+1

SIO

M block
scheduler

interrupt
R

scheduler
R+1

scheduler

Operating System Concepts, Addison-Wesley 1994 1.12 Silberschatz & Galvin 1994

OS Features Needed for Multiprogramming

g I/O routine supplied by the system.

g Memory management − the system must allocate
the memory to several jobs.

g CPU scheduling − the system must choose among
several jobs ready to run.

g Allocation of devices.

Operating System Concepts, Addison-Wesley 1994 1.13 Silberschatz & Galvin 1994

Time-Sharing Systems− Interactive Computing

g The CPU is multiplied among several jobs that are
kept in memory and on disk (the CPU is allocated
to a job only if the job is in memory).

g A job is swapped in and out of memory to the
disk.

g On-line communication between the user and the
system is provided; when the operating system
finishes the execution of one command, it seeks
the next ‘‘control statement’’ not from a card
reader, but rather from the user’s keyboard.

g On-line file system must be available for users to
access data and code.

Operating System Concepts, Addison-Wesley 1994 1.14 Silberschatz & Galvin 1994

Personal-Computer Systems

g Personal computers − computer system dedicated
to a single user.

g I/O devices − keyboards, mice, display screens,
small printers.

g User convenience and responsiveness.

g Can adopt technology developed for larger
operating systems; often individuals have sole use
of computer and do not need advanced CPU utili-
zation or protection features.

Operating System Concepts, Addison-Wesley 1994 1.15 Silberschatz & Galvin 1994

Parallel Systems − multiprocessor systems with
more than one CPU in close communication.

g Tightly coupled system − processors share
memory and a clock; communication usually
takes place through the shared memory.

g Advantages of parallel systems:

- Increased throughput

- Economical

- Increased reliability

b graceful degradation

b fail-soft systems

Operating System Concepts, Addison-Wesley 1994 1.16 Silberschatz & Galvin 1994

g Symmetric multiprocessing

- Each processor runs an identical copy of the
operating system.

- Many processes can run at once without per-
formance deterioration.

g Asymmetric multiprocessing

- Each processor is assigned a specific task;
master processor schedules and allocates work
to slave processors.

- More common in extremely large systems.

Operating System Concepts, Addison-Wesley 1994 1.17 Silberschatz & Galvin 1994

Distributed Systems − distribute the computation
among several physical processors.

g Loosely coupled system − each processor has its
own local memory; processors communicate with
one another through various communication lines,
such as high-speed buses or telephone lines.

g Advantages of distributed systems:

- Resource sharing

- Computation speed up − load sharing

- Reliability

- Communication

Operating System Concepts, Addison-Wesley 1994 1.18 Silberschatz & Galvin 1994

Real-Time Systems

g Often used as a control device in a dedicated
application such as controlling scientific experi-
ments, medical imaging systems, industrial con-
trol systems, and some display systems.

g Well-defined fixed-time constraints.

g Hard real-time system.

- Secondary storage limited or absent; data
stored in short-term memory, or read-only
memory (ROM).

- Conflicts with time-sharing systems; not sup-
ported by general-purpose operating systems.

g Soft real-time system.

- Limited utility in industrial control or robotics.

- Useful in applications (multimedia, virtual
reality) requiring advanced operating-system
features.

Operating System Concepts, Addison-Wesley 1994 1.19 Silberschatz & Galvin 1994

CHAPTER 2: COMPUTER-SYSTEM STRUCTURES

g Computer-System Operation

g I/O Structure

g Storage Structure

g Storage Hierarchy

g Hardware Protection

g General System Architecture

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Computer-System Operation

Controller
Device

Dn3Dn2Dn1

DCn

Devices

D21

DC2DC1

Memory controller

...CPU

D11 D12

Memory

g I/O devices and the CPU can execute concurrently.

g Each device controller is in charge of a particular
device type.

g Each device controller has a local buffer.

g CPU moves data from/to main memory to/from
the local buffers.

g I/O is from the device to local buffer of controller.

g Device controller informs CPU that it has finished
its operation by causing an interrupt.

Operating System Concepts, Addison-Wesley 1994 2.1 Silberschatz & Galvin 1994

Common Functions of Interrupts

g Interrupt transfers control to the interrupt service
routine, generally, through the interrupt vector,
which contains the addresses of all the service
routines.

g Interrupt architecture must save the address of the
interrupted instruction.

g Incoming interrupts are disabled while another
interrupt is being processed to prevent a lost
interrupt.

g A trap is a software-generated interrupt caused
either by an error or a user request.

g An operating system is interrupt driven.

Operating System Concepts, Addison-Wesley 1994 2.2 Silberschatz & Galvin 1994

Interrupt Handling

g The operating system preserves the state of the
CPU by storing registers and the program counter.

g Determines which type of interrupt has occurred:

- polling

- vectored interrupt system

g Separate segments of code determine what action
should be taken for each type of interrupt.

Operating System Concepts, Addison-Wesley 1994 2.3 Silberschatz & Galvin 1994

I/O Structure

g After I/O starts, control returns to user program
only upon I/O completion.

- wait instruction idles the CPU until the next
interrupt.

- wait loop (contention for memory access).

- at most one I/O request is outstanding at a
time; no simultaneous I/O processing.

g After I/O starts, control returns to user program
without waiting for I/O completion.

- System call − request to the operating system
to allow user to wait for I/O completion.

- Device-status table contains entry for each I/O

device indicating its type, address, and state.

- Operating system indexes into I/O device table
to determine device status and to modify table
entry to include interrupt.

Operating System Concepts, Addison-Wesley 1994 2.4 Silberschatz & Galvin 1994

Direct Memory Access (DMA) Structure

g Schema

I/O instructions

I/O devices

Memory
CPU

g Used for high-speed I/O devices able to transmit
information at close to memory speeds.

g Device controller transfers blocks of data from
buffer storage directly to main memory without
CPU intervention.

g Only one interrupt is generated per block, rather
than the one interrupt per byte.

Operating System Concepts, Addison-Wesley 1994 2.5 Silberschatz & Galvin 1994

Storage Structure

g Main memory − only large storage media that the
CPU can access directly.

g Secondary storage − extension of main memory
that provides large nonvolatile storage capacity.

g Magnetic disks − rigid metal or glass platters
covered with magnetic recording material.

- Disk surface is logically divided into tracks,
which are subdivided into sectors.

- The disk controller determines the logical
interaction between the device and the com-
puter.

Operating System Concepts, Addison-Wesley 1994 2.6 Silberschatz & Galvin 1994

Storage Hierarchy

g Storage systems organized in hierarchy:

- speed

- cost

- volatility

g Caching − copying information into faster storage
system; main memory can be viewed as a fast
cache for secondary memory.

Operating System Concepts, Addison-Wesley 1994 2.7 Silberschatz & Galvin 1994

Hardware Protection

g Dual-Mode Operation

g I/O Protection

g Memory Protection

g CPU Protection

Operating System Concepts, Addison-Wesley 1994 2.8 Silberschatz & Galvin 1994

Dual-Mode Operation

g Sharing system resources requires operating sys-
tem to ensure that an incorrect program cannot
cause other programs to execute incorrectly.

g Provide hardware support to differentiate between
at least two modes of operations.

1. User mode − execution done on behalf of a
user.

2. Monitor mode (also supervisor mode or system
mode) − execution done on behalf of operating
system.

Operating System Concepts, Addison-Wesley 1994 2.9 Silberschatz & Galvin 1994

g Mode bit added to computer hardware to indicate
the current mode: monitor (0) or user (1).

g When an interrupt or fault occurs hardware
switches to monitor mode

usermonitor

interrupt/fault

set user mode

g Privileged instructions can be issued only in
monitor mode.

Operating System Concepts, Addison-Wesley 1994 2.10 Silberschatz & Galvin 1994

I/O Protection

g All I/O instructions are privileged instructions.

g Must ensure that a user program could never gain
control of the computer in monitor mode (i.e., a
user program that, as part of its execution, stores
a new address in the interrupt vector).

Operating System Concepts, Addison-Wesley 1994 2.11 Silberschatz & Galvin 1994

Memory Protection

g Must provide memory protection at least for the
interrupt vector and the interrupt service routines.

g In order to have memory protection, add two
registers that determine the range of legal
addresses a program may access:

- base register − holds the smallest legal physi-
cal memory address.

- limit register − contains the size of the range.

g Memory outside the defined range is protected.

0

limit register

120900

300040
base register

job 4

job 3

job 2

job 1

monitor

1024000

880000

420940

300040

256000

Operating System Concepts, Addison-Wesley 1994 2.12 Silberschatz & Galvin 1994

g Protection hardware

monitor−addressing error
trap to operating system

nono

yesyes
<≥CPU

address

base base + limit

memory

g When executing in monitor mode, the operating
system has unrestricted access to both monitor
and users’ memory.

g The load instructions for the base and limit regis-
ters are privileged instructions.

Operating System Concepts, Addison-Wesley 1994 2.13 Silberschatz & Galvin 1994

CPU Protection

g Timer − interrupts computer after specified period
to ensure operating system maintains control.

- Timer is decremented every clock tick.

- When timer reaches the value 0, an interrupt
occurs.

g Timer commonly used to implement time sharing.

g Timer also used to compute the current time.

g Load-timer is a privileged instruction.

Operating System Concepts, Addison-Wesley 1994 2.14 Silberschatz & Galvin 1994

General-System Architecture

g Given that I/O instructions are privileged, how
does the user program perform I/O?

g System call − the method used by a process to
request action by the operating system.

- Usually takes the form of a trap to a specific
location in the interrupt vector.

- Control passes through the interrupt vector to a
service routine in the OS, and the mode bit is
set to monitor mode.

- The monitor verifies that the parameters are
correct and legal, executes the request, and
returns control to the instruction following the
system call.

Operating System Concepts, Addison-Wesley 1994 2.15 Silberschatz & Galvin 1994

CHAPTER 3: OPERATING-SYSTEM STRUCTURES

g System Components

g Operating-System Services

g System Calls

g System Programs

g System Structure

g Virtual Machines

g System Design and Implementation

g System Generation

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Most operating systems support the following types
of system components:

g Process Management

g Main-Memory Management

g Secondary-Storage Management

g I/O System Management

g File Management

g Protection System

g Networking

g Command-Interpreter System

Operating System Concepts, Addison-Wesley 1994 3.1 Silberschatz & Galvin 1994

Process Management

g A process is a program in execution. A process
needs certain resources, including CPU time,
memory, files, and I/O devices, to accomplish its
task.

g The operating system is responsible for the fol-
lowing activities in connection with process
management:

- process creation and deletion.

- process suspension and resumption.

- provision of mechanisms for:

b process synchronization

b process communication

Operating System Concepts, Addison-Wesley 1994 3.2 Silberschatz & Galvin 1994

Main-Memory Management

g Memory is a large array of words or bytes, each
with its own address. It is a repository of quickly
accessible data shared by the CPU and I/O devices.

g Main memory is a volatile storage device. It
loses its contents in the case of system failure.

g The operating system is responsible for the fol-
lowing activities in connection with memory
management:

- Keep track of which parts of memory are
currently being used and by whom.

- Decide which processes to load when memory
space becomes available.

- Allocate and deallocate memory space as
needed.

Operating System Concepts, Addison-Wesley 1994 3.3 Silberschatz & Galvin 1994

Secondary-Storage Management

g Since main memory (primary storage) is volatile
and too small to accommodate all data and pro-
grams permanently, the computer system must
provide secondary storage to back up main
memory.

g Most modern computer systems use disks as the
principle on-line storage medium, for both pro-
grams and data.

g The operating system is responsible for the fol-
lowing activities in connection with disk manage-
ment:

- Free-space management

- Storage allocation

- Disk scheduling

Operating System Concepts, Addison-Wesley 1994 3.4 Silberschatz & Galvin 1994

I/O System Management

g The I/O system consists of:

- A buffer-caching system

- A general device-driver interface

- Drivers for specific hardware devices

Operating System Concepts, Addison-Wesley 1994 3.5 Silberschatz & Galvin 1994

File Management

g A file is a collection of related information
defined by its creator. Commonly, files represent
programs (both source and object forms) and
data.

g The operating system is responsible for the fol-
lowing activities in connection with file manage-
ment:

- File creation and deletion.

- Directory creation and deletion.

- Support of primitives for manipulating files
and directories.

- Mapping files onto secondary storage.

- File backup on stable (nonvolatile) storage
media.

Operating System Concepts, Addison-Wesley 1994 3.6 Silberschatz & Galvin 1994

Protection System

g Protection refers to a mechanism for controlling
access by programs, processes, or users to both
system and user resources.

g The protection mechanism must:

- distinguish between authorized and unauthor-
ized usage.

- specify the controls to be imposed.

- provide a means of enforcement.

Operating System Concepts, Addison-Wesley 1994 3.7 Silberschatz & Galvin 1994

Networking (Distributed Systems)

g A distributed system is a collection of processors
that do not share memory or a clock. Each proces-
sor has its own local memory.

g The processors in the system are connected
through a communication network.

g A distributed system provides user access to vari-
ous system resources.

g Access to a shared resource allows:

- Computation speed-up

- Increased data availability

- Enhanced reliability

Operating System Concepts, Addison-Wesley 1994 3.8 Silberschatz & Galvin 1994

Command-Interpreter System

g Many commands are given to the operating sys-
tem by control statements which deal with:

- process creation and management

- I/O handling

- secondary-storage management

- main-memory management

- file-system access

- protection

- networking

g The program that reads and interprets control
statements is called variously:

- control-card interpreter

- command-line interpreter

- shell (in UNIX)

Its function is to get and execute the next com-
mand statement.

Operating System Concepts, Addison-Wesley 1994 3.9 Silberschatz & Galvin 1994

Operating-System Services

g Program execution − system capability to load a
program into memory and to run it.

g I/O operations − since user programs cannot exe-
cute I/O operations directly, the operating system
must provide some means to perform I/O.

g File-system manipulation − program capability to
read, write, create, and delete files.

g Communications − exchange of information
between processes executing either on the same
computer or on different systems tied together by
a network. Implemented via shared memory or
message passing.

g Error detection − ensure correct computing by
detecting errors in the CPU and memory
hardware, in I/O devices, or in user programs.

Operating System Concepts, Addison-Wesley 1994 3.10 Silberschatz & Galvin 1994

Additional operating-system functions exist not for
helping the user, but rather for ensuring efficient sys-
tem operation.

g Resource allocation − allocating resources to mul-
tiple users or multiple jobs running at the same
time.

g Accounting − keep track of and record which
users use how much and what kinds of computer
resources for account billing or for accumulating
usage statistics.

g Protection − ensuring that all access to system
resources is controlled.

Operating System Concepts, Addison-Wesley 1994 3.11 Silberschatz & Galvin 1994

System Calls

g System calls provide the interface between a run-
ning program and the operating system.

- Generally available as assembly-language
instructions.

- Languages defined to replace assembly
language for systems programming allow sys-
tem calls to be made directly (e.g., C, Bliss,
PL/360).

g Three general methods are used to pass parame-
ters between a running program and the operating
system:

- Pass parameters in registers.

- Store the parameters in a table in memory, and
the table address is passed as a parameter in a
register.

- Push (store) the parameters onto the stack by
the program, and pop off the stack by the
operating system.

Operating System Concepts, Addison-Wesley 1994 3.12 Silberschatz & Galvin 1994

System Programs

g System programs provide a convenient environ-
ment for program development and execution.
They can be divided into:

- File manipulation

- Status information

- File modification

- Programming-language support

- Program loading and execution

- Communications

- Application programs

g Most users’ view of the operation system is
defined by system programs, not the actual sys-
tem calls.

Operating System Concepts, Addison-Wesley 1994 3.13 Silberschatz & Galvin 1994

System Structure − Simple Approach

g MS-DOS − written to provide the most functional-
ity in the least space; it was not divided into
modules. MS-DOS has some structure, but its
interfaces and levels of functionality are not well
separated.

g UNIX − limited by hardware functionality, the
original UNIX operating system had limited struc-
turing. The UNIX OS consists of two separable
parts:

- the systems programs.

- the kernel, which consists of everything below
the system-call interface and above the physi-
cal hardware. Provides the file system, CPU

scheduling, memory management, and other
operating-system functions; a large number of
functions for one level.

Operating System Concepts, Addison-Wesley 1994 3.14 Silberschatz & Galvin 1994

System Structure − Layered Approach

g The operating system is divided into a number of
layers (levels), each built on top of lower layers.
The bottom layer (layer 0) is the hardware; the
highest (layer N) is the user interface.

g With modularity, layers are selected such that
each uses functions (operations) and services of
only lower-level layers.

g A layered design was first used in the THE operat-
ing system. Its six layers are as follows:

Level 5: user programsiii
Level 4: buffering for input and output devicesiii
Level 3: operator-console device driveriii
Level 2: memory managementiii
Level 1: CPU schedulingiii
Level 0: hardware

Operating System Concepts, Addison-Wesley 1994 3.15 Silberschatz & Galvin 1994

Virtual Machines

g A virtual machine takes the layered approach to
its logical conclusion. It treats hardware and the
operating system kernel as though they were all
hardware.

g A virtual machine provides an interface identical
to the underlying bare hardware.

g The operating system creates the illusion of mul-
tiple processes, each executing on its own proces-
sor with its own (virtual) memory.

g The resources of the physical computer are shared
to create the virtual machines.

- CPU scheduling can create the appearance that
users have their own processor.

- Spooling and a file system can provide virtual
card readers and virtual line printers.

- A normal user time-sharing terminal serves as
the virtual machine operator’s console.

Operating System Concepts, Addison-Wesley 1994 3.16 Silberschatz & Galvin 1994

Advantages and Disadvantages of Virtual Machines

g The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual
machines. This isolation, however, permits no
direct sharing of resources.

g A virtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual
machine, instead of on a physical machine and so
does not disrupt normal system operation.

g The virtual machine concept is difficult to imple-
ment due to the effort required to provide an
exact duplicate of the underlying machine.

Operating System Concepts, Addison-Wesley 1994 3.17 Silberschatz & Galvin 1994

System Design Goals

g User goals − operating system should be con-
venient to use, easy to learn, reliable, safe, and
fast.

g System goals − operating system should be easy
to design, implement, and maintain, as well as
flexible, reliable, error-free, and efficient.

Operating System Concepts, Addison-Wesley 1994 3.18 Silberschatz & Galvin 1994

Mechanisms and Policies

g Mechanisms determine how to do something; pol-
icies decide what will be done.

g The separation of policy from mechanism is a
very important principle; it allows maximum
flexibility if policy decisions are to be changed
later.

Operating System Concepts, Addison-Wesley 1994 3.19 Silberschatz & Galvin 1994

System Implementation

g Traditionally written in assembly language,
operating systems can now be written in higher-
level languages.

g Code written in a high-level language:

- can be written faster.

- is more compact.

- is easier to understand and debug.

g An operating system is far easier to port (move to
some other hardware) if it is written in a high-
level language.

Operating System Concepts, Addison-Wesley 1994 3.20 Silberschatz & Galvin 1994

System Generation (SYSGEN)

g Operating systems are designed to run on any of a
class of machines; the system must be configured
for each specific computer site.

g SYSGEN program obtains information concerning
the specific configuration of the hardware system.

g Booting − starting a computer by loading the ker-
nel.

g Bootstrap program − code stored in ROM that is
able to locate the kernel, load it into memory, and
start its execution.

Operating System Concepts, Addison-Wesley 1994 3.21 Silberschatz & Galvin 1994

CHAPTER 4: PROCESSES

g Process Concept

g Process Scheduling

g Operation on Processes

g Cooperating Processes

g Threads

g Interprocess Communication

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Process Concept

g An operating system executes a variety of pro-
grams:

- Batch system − jobs

- Time-shared systems − user programs or tasks

g Textbook uses the terms job and process almost
interchangeably.

g Process − a program in execution; process execu-
tion must progress in a sequential fashion.

g A process includes:

- program counter

- stack

- data section

Operating System Concepts, Addison-Wesley 1994 4.1 Silberschatz & Galvin 1994

g As a process executes, it changes state.

- New: The process is being created.

- Running: Instructions are being executed.

- Waiting: The process is waiting for some
event to occur.

- Ready: The process is waiting to be assigned
to a processor.

- Terminated: The process has finished execu-
tion.

g Diagram of process state:

I/O or event
waitwaitingcompletion

I/O or event
scheduler dispatch

runningready

terminatedexit
interrupt

admittednew

Operating System Concepts, Addison-Wesley 1994 4.2 Silberschatz & Galvin 1994

g Process Control Block (PCB) − Information asso-
ciated with each process.

- Process state

- Program counter

- CPU registers

- CPU scheduling information

- Memory-management information

- Accounting information

- I/O status information

Operating System Concepts, Addison-Wesley 1994 4.3 Silberschatz & Galvin 1994

g Process scheduling queues

- job queue − set of all processes in the system.

- ready queue − set of all processes residing in
main memory, ready and waiting to execute.

- device queues − set of processes waiting for a
particular I/O device.

g Process migration between the various queues.

queue(s)
I/O waitingI/O

end
CPUready queue

job queue

Operating System Concepts, Addison-Wesley 1994 4.4 Silberschatz & Galvin 1994

g Schedulers

- Long-term scheduler (job scheduler) − selects
which processes should be brought into the
ready queue.

- Short-term scheduler (CPU scheduler) −
selects which process should be executed next
and allocates CPU.

short termlong term

ready queue CPU
end

I/O I/O waiting
queue(s)

Operating System Concepts, Addison-Wesley 1994 4.5 Silberschatz & Galvin 1994

g Short-term scheduler is invoked very frequently
(milliseconds) ⇒ (must be fast).

g Long-term scheduler is invoked very infrequently
(seconds, minutes) ⇒ (may be slow).

g The long-term scheduler controls the degree of
multiprogramming.

g Processes can be described as either:

- I/O-bound process − spends more time doing
I/O than computations; many short CPU bursts.

- CPU-bound process − spends more time doing
computations; few very long CPU bursts.

Operating System Concepts, Addison-Wesley 1994 4.6 Silberschatz & Galvin 1994

Context Switch

g When CPU switches to another process, the sys-
tem must save the state of the old process and
load the saved state for the new process.

g Context-switch time is overhead; the system does
no useful work while switching.

g Time dependent on hardware support.

Operating System Concepts, Addison-Wesley 1994 4.7 Silberschatz & Galvin 1994

Process Creation

g Parent process creates children processes, which,
in turn create other processes, forming a tree of
processes.

g Resource sharing

- Parent and children share all resources.

- Children share subset of parent’s resources.

- Parent and child share no resources.

g Execution

- Parent and children execute concurrently.

- Parent waits until children terminate.

g Address space

- Child duplicate of parent.

- Child has a program loaded into it.

g UNIX examples

- fork system call creates new process.

- execve system call used after a fork to replace
the process’ memory space with a new pro-
gram.

Operating System Concepts, Addison-Wesley 1994 4.8 Silberschatz & Galvin 1994

Process Termination

g Process executes last statement and asks the
operating system to delete it (exit).

- Output data from child to parent (via fork).

- Process’ resources are deallocated by operating
system.

g Parent may terminate execution of children
processes (abort).

- Child has exceeded allocated resources.

- Task assigned to child is no longer required.

- Parent is exiting.
b Operating system does not allow child to

continue if its parent terminates.
b Cascading termination.

Operating System Concepts, Addison-Wesley 1994 4.9 Silberschatz & Galvin 1994

Cooperating Processes

g Independent process cannot affect or be affected
by the execution of another process.

g Cooperating process can affect or be affected by
the execution of another process.

g Advantages of process cooperation:

- Information sharing

- Computation speed-up

- Modularity

- Convenience

Operating System Concepts, Addison-Wesley 1994 4.10 Silberschatz & Galvin 1994

Producer-Consumer Problem

g Paradigm for cooperating processes; producer
process produces information that is consumed by
a consumer process.

- unbounded-buffer places no practical limit on
the size of the buffer.

- bounded-buffer assumes that there is a fixed
buffer size.

g Shared-memory solution:

- Shared data

var n;
type item = ... ;
var buffer: array [0..n−1] of item;
in, out: 0..n−1;
in := 0;
out := 0;

Operating System Concepts, Addison-Wesley 1994 4.11 Silberschatz & Galvin 1994

- Producer process

repeat
...

produce an item in nextp
...

while in+1 mod n = out do no-op;
buffer[in] := nextp;
in := in+1 mod n;

until false;

- Consumer process

repeat
while in = out do no-op;
nextc := buffer[out];
out := out+1 mod n;

...
consume the item in nextc

...
until false;

- Solution is correct, but can only fill up n −1
buffer.

Operating System Concepts, Addison-Wesley 1994 4.12 Silberschatz & Galvin 1994

Threads

g A thread (or lightweight process) is a basic unit
of CPU utilization; it consists of:

- program counter

- register set

- stack space

g A thread shares with its peer threads its:

- code section

- data section

- operating-system resources

collectively known as a task.

g A traditional or heavyweight process is equal to a
task with one thread.

Operating System Concepts, Addison-Wesley 1994 4.13 Silberschatz & Galvin 1994

g In a task containing multiple threads, while one
server thread is blocked and waiting, a second
thread in the same task could run.

- Cooperation of multiple threads in same job
confers higher throughput and improved per-
formance.

- Applications that require sharing a common
buffer (producer−consumer problem) benefit
from thread utilization.

g Threads provide a mechanism that allows sequen-
tial processes to make blocking system calls
while also achieving parallelism.

g Kernel-supported threads (Mach and OS/2).

g User-level threads; supported above the kernel,
via a set of library calls at the user level (Project
Andrew from CMU).

g Hybrid approach implements both user-level and
kernel-supported threads (Solaris 2).

Operating System Concepts, Addison-Wesley 1994 4.14 Silberschatz & Galvin 1994

Solaris 2 − version of UNIX with support for threads
at the kernel and user levels, symmetric multipro-
cessing, and real-time scheduling.

g LWP − intermediate level between user-level
threads and kernel-level threads.

g Resource needs of thread types:

- Kernel thread − small data structure and a
stack; thread switching does not require chang-
ing memory access information, and therefore
is relatively fast.

- LWP − PCB with register data, accounting
information, and memory information; switch-
ing between LWPs is relatively slow.

- User-level thread − needs only a stack and a
program counter. Switching is fast since ker-
nel is not involved. Kernel only sees the LWPs
in the process that support user-level threads.

Operating System Concepts, Addison-Wesley 1994 4.15 Silberschatz & Galvin 1994

Interprocess Communication (IPC) − provides a
mechanism to allow processes to communicate and
to synchronize their actions.

g Message system − processes communicate with
each other without resorting to shared variables.

g IPC facility provides two operations:

- send(message) − messages can be of either
fixed or variable size.

- receive(message)

g If P and Q wish to communicate, they need to:

- establish a communication link between them

- exchange messages via send/receive

g Communication link

- physical implementation (e.g., shared memory,
hardware bus)

- logical implementation (e.g., logical proper-
ties)

Operating System Concepts, Addison-Wesley 1994 4.16 Silberschatz & Galvin 1994

Implementation questions:

g How are links established?

g Can a link be associated with more than two
processes?

g How many links can there be between every pair
of communicating processes?

g What is the capacity of a link?

g Is the size of a message that the link can accom-
modate fixed or variable?

g Is a link unidirectional or bidirectional?

Operating System Concepts, Addison-Wesley 1994 4.17 Silberschatz & Galvin 1994

Direct Communication

g Processes must name each other explicitly:

- send(P, message) − send a message to
process P

- receive(Q, message) − receive a message from
process Q

g Properties of communication link

- Links are established automatically.

- A link is associated with exactly one pair of
communicating processes.

- Between each pair there exists exactly one
link.

- The link may be unidirectional, but is usually
bidirectional.

Operating System Concepts, Addison-Wesley 1994 4.18 Silberschatz & Galvin 1994

Indirect Communication

g Messages are directed and received from mail-
boxes (also referred to as ports).

- Each mailbox has a unique id.

- Processes can communicate only if they share
a mailbox.

g Properties of communication link

- Link established only if the two processes
share a mailbox in common.

- A link may be associated with many processes.

- Each pair of processes may share several com-
munication links.

- Link may be unidirectional or bidirectional.

g Operations

- create a new mailbox

- send and receive messages through mailbox

- destroy a mailbox

Operating System Concepts, Addison-Wesley 1994 4.19 Silberschatz & Galvin 1994

Indirect Communication (Continued)

g Mailbox sharing

- P 1, P 2, and P 3 share mailbox A.

- P 1 sends; P 2 and P 3 receive.

- Who gets the message?

g Solutions

- Allow a link to be associated with at most two
processes.

- Allow only one process at a time to execute a
receive operation.

- Allow the system to select arbitrarily the
receiver. Sender is notified who the receiver
was.

Operating System Concepts, Addison-Wesley 1994 4.20 Silberschatz & Galvin 1994

Buffering − queue of messages attached to the link;
implemented in one of three ways.

g Zero capacity − 0 messages

Sender must wait for receiver (rendezvous).

g Bounded capacity − finite length of n messages

Sender must wait if link full.

g Unbounded capacity − infinite length

Sender never waits.

Operating System Concepts, Addison-Wesley 1994 4.21 Silberschatz & Galvin 1994

Exception Conditions − error recovery

g Process terminates

g Lost messages

g Scrambled Messages

Operating System Concepts, Addison-Wesley 1994 4.22 Silberschatz & Galvin 1994

CHAPTER 5: CPU SCHEDULING

g Basic Concepts

g Scheduling Criteria

g Scheduling Algorithms

g Multiple-Processor Scheduling

g Real-Time Scheduling

g Algorithm Evaluation

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

Basic Concepts

g Maximum CPU utilization obtained with multi-
programming.

g CPU−I/O Burst Cycle − Process execution con-
sists of a cycle of CPU execution and I/O wait.

g CPU burst distribution

frequency

burst time →

Operating System Concepts, Addison-Wesley 1994 5.1 Silberschatz & Galvin 1994

g Short-term scheduler −selects from among the
processes in memory that are ready to execute,
and allocates the CPU to one of them.

g CPU scheduling decisions may take place when a
process:

1. switches from running to waiting state.

2. switches from running to ready state.

3. switches from waiting to ready.

4. terminates.

g Scheduling under 1 and 4 is nonpreemptive.

g All other scheduling is preemptive.

Operating System Concepts, Addison-Wesley 1994 5.2 Silberschatz & Galvin 1994

Dispatcher

g Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

- switching context

- switching to user mode

- jumping to the proper location in the user pro-
gram to restart that program

g Dispatch latency − time it takes for the dispatcher
to stop one process and start another running.

Operating System Concepts, Addison-Wesley 1994 5.3 Silberschatz & Galvin 1994

Scheduling Criteria

g CPU utilization − keep the CPU as busy as
possible

g Throughput − # of processes that complete their
execution per time unit

g Turnaround time − amount of time to execute a
particular process

g Waiting time − amount of time a process has been
waiting in the ready queue

g Response time − amount of time it takes from
when a request was submitted until the first
response is produced, not output (for time-
sharing environment)

Operating System Concepts, Addison-Wesley 1994 5.4 Silberschatz & Galvin 1994

g Optimization

- Max CPU utilization

- Max throughput

- Min turnaround time

- Min waiting time

- Min response time

Operating System Concepts, Addison-Wesley 1994 5.5 Silberschatz & Galvin 1994

First-Come, First-Served (FCFS) Scheduling

g Example: Process Burst timehhhhhhh hhhhhhhhh
P 1 24
P 2 3
P 3 3

g Suppose that the processes arrive in the order:

P 1, P 2, P 3.

The Gantt chart for the schedule is:

3027240

P3P2P1

g Waiting time for: P 1 = 0
P 2 = 24
P 3 = 27

g Average waiting time: (0 + 24 + 27)/3 = 17

Operating System Concepts, Addison-Wesley 1994 5.6 Silberschatz & Galvin 1994

g Suppose that the processes arrive in the order:

P 2, P 3, P 1.

The Gantt chart for the schedule is:

P3
P2 P1

0 3 6 30

g Waiting time for: P 1 = 6
P 2 = 0
P 3 = 3

g Average waiting time: (6 + 0 + 3)/3 = 3

g Much better than previous case.

g Convoy effect: short process behind long process

Operating System Concepts, Addison-Wesley 1994 5.7 Silberschatz & Galvin 1994

Shortest-Job-First (SJF) Scheduling

g Associate with each process the length of its next
CPU burst. Use these lengths to schedule the pro-
cess with the shortest time.

g Two schemes:

a) nonpreemptive − once CPU given to the pro-
cess it cannot be preempted until it completes
its CPU burst.

b) preemptive − if a new process arrives with
CPU burst length less than remaining time of
current executing process, preempt. This
scheme is known as the Shortest-Remaining-
Time-First (SRTF).

g SJF is optimal − gives minimum average waiting
time for a given set of processes.

Operating System Concepts, Addison-Wesley 1994 5.8 Silberschatz & Galvin 1994

Example of SJF

g Process Arrival time CPU timehhhhhhh hhhhhhhhhhh hhhhhhhh
P 1 0 7
P 2 2 4
P 3 4 1
P 4 5 4

g SJF (non-preemptive)

P 4P 3 P 2P 1

1670 8 12

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

g SRTF (preemptive)

P 2P 1 P 1

11 1675420

P 4P 2P 3

Average waiting time = (9 + 1 + 0 + 2)/4 = 3

Operating System Concepts, Addison-Wesley 1994 5.9 Silberschatz & Galvin 1994

How do we know the length of the next CPU burst?

g Can only estimate the length.

g Can be done by using the length of previous CPU

bursts, using exponential averaging.

1. Tn = actual length of n th CPU burst

2. ψn = predicted value of n th CPU burst

3. 0 ≤ W ≤ 1

4. Define:

ψn + 1 = W * Tn + (1 − W) ψn

Operating System Concepts, Addison-Wesley 1994 5.10 Silberschatz & Galvin 1994

Examples:

g W = 0

ψn + 1 = ψn

Recent history does not count.

g W = 1

ψn + 1 = Tn

Only the actual last CPU burst counts.

g If we expand the formula, we get:

ψn + 1 = W ∗ Tn + (1 − W) ∗ W ∗ Tn −1 +
(1 − W)2 ∗ W ∗ Tn −2 + ... + (1 − W)q

∗ W ∗ Tn −q

So if W = 1/2 ⇒ each successive term has less
and less weight.

Operating System Concepts, Addison-Wesley 1994 5.11 Silberschatz & Galvin 1994

Priority Scheduling

g A priority number (integer) is associated with
each process.

g The CPU is allocated to the process with the
highest priority (smallest integer ≡ highest
priority).

a) preemptive

b) nonpreemptive

g SJN is a priority scheduling where priority is the
predicted next CPU burst time.

g Problem ≡ Starvation − low priority processes
may never execute.

Solution ≡ Aging − as time progresses increase
the priority of the process.

Operating System Concepts, Addison-Wesley 1994 5.12 Silberschatz & Galvin 1994

Round Robin (RR)

g Each process gets a small unit of CPU time (time
quantum), usually 10−100 milliseconds. After
this time has elapsed, the process is preempted
and added to the end of the ready queue.

g If there are n processes in the ready queue and
the time quantum is q , then each process gets 1/n
of the CPU time in chunks of at most q time units
at once. No process waits more than (n −1)q time
units.

g Performance

q large ⇒ FIFO

q small ⇒ q must be large with respect to con-
text switch, otherwise overhead is too high.

Operating System Concepts, Addison-Wesley 1994 5.13 Silberschatz & Galvin 1994

Example of RR with time quantum = 20

g Process CPU timeshhhhhhh hhhhhhhhh
P 1 53
P 2 17
P 3 68
P 4 24

g The Gantt chart is:

16215413412111797775737200

P 3P 3P 1P 4P 3P 1P 4P 3P 2P 1

g Typically, higher average turnaround than SRT,
but better response.

Operating System Concepts, Addison-Wesley 1994 5.14 Silberschatz & Galvin 1994

Multilevel Queue

g Ready queue is partitioned into separate queues.

Example: foreground (interactive)

background (batch)

g Each queue has its own scheduling algorithm.

Example: foreground − RR

background − FCFS

g Scheduling must be done between the queues.

- Fixed priority scheduling

Example: serve all from foreground then from
background. Possibility of starvation.

- Time slice − each queue gets a certain amount
of CPU time which it can schedule amongst its
processes.

Example:

80% to foreground in RR

20% to background in FCFS

Operating System Concepts, Addison-Wesley 1994 5.15 Silberschatz & Galvin 1994

Multilevel Feedback Queue

g A process can move between the various queues;
aging can be implemented this way.

g Multilevel-feedback-queue scheduler defined by
the following parameters:

- number of queues

- scheduling algorithm for each queue

- method used to determine when to upgrade a
process

- method used to determine when to demote a
process

- method used to determine which queue a pro-
cess will enter when that process needs service

Operating System Concepts, Addison-Wesley 1994 5.16 Silberschatz & Galvin 1994

Example of multilevel feedback queue

g Three queues:

- Q 0 − time quantum 8 milliseconds

- Q 1 − time quantum 16 milliseconds

- Q 2 − FCFS

g Scheduling

A new job enters queue Q 0 which is served FCFS.
When it gains CPU, job receives 8 milliseconds.
If it does not finish in 8 milliseconds, job is
moved to queue Q 1. At Q 1, job is again served
FCFS and receives 16 additional milliseconds. If
it still does not complete, it is preempted and
moved to queue Q 2.

Operating System Concepts, Addison-Wesley 1994 5.17 Silberschatz & Galvin 1994

g Multiple-Processor Scheduling

- CPU scheduling more complex when multiple
CPUs are available.

- Homogeneous processors within a multipro-
cessor.

- Load sharing

- Asymmetric multiprocessing − only one pro-
cessor accesses the system data structures,
alleviating the need for data sharing.

g Real-Time Scheduling

- Hard real-time systems − required to complete
a critical task within a guaranteed amount of
time.

- Soft real-time computing − requires that criti-
cal processes receive priority over less for-
tunate ones.

Operating System Concepts, Addison-Wesley 1994 5.18 Silberschatz & Galvin 1994

Algorithm Evaluation

g Deterministic modeling − takes a particular
predetermined workload and defines the perfor-
mance of each algorithm for that workload.

g Queueing models

g Implementation

Operating System Concepts, Addison-Wesley 1994 5.19 Silberschatz & Galvin 1994

Operating System Concepts, Addison-Wesley 1994 Silberschatz & Galvin 1994

