
Appendix A

THE MACH
SYSTEM

The Mach operating system is designed to incorporate the many recent inno-
vations in operating-system research to produce a fully functional, technically
advanced system. Unlike UNIX, which was developed without regard for
multiprocessing, Mach incorporates multiprocessing support throughout. Its
multiprocessing support is also exceedingly flexible, ranging from shared mem-
ory systems to systems with no memory shared between processors. Mach is
designed to run on computer systems ranging from one to thousands of proces-
sors. In addition, Mach is easily ported to many varied computer architectures.
A key goal of Mach is to be a distributed system capable of functioning on
heterogeneous hardware.

Although many experimental operating systems are being designed, built,
and used, Mach is better able to satisfy the needs of the masses than the others
are because it offers full compatibility with UNIX 4.3BSD. As such, it provides a
unique opportunity for us to compare two functionally similar, but internally
dissimilar, operating systems. The order and contents of the presentation of
Mach is different from that of UNIX to reflect the differing emphasis of the two
systems. There is no section on the user interface, because that component is
similar in 4.3BSD when running the BSD server. As we shall see, Mach provides
the ability to layer emulation of other operating systems as well, and they can
even run concurrently.

A.1 History
Mach traces its ancestry to the Accent operating system developed at Carnegie
Mellon University (CMU). Although Accent pioneered a number of novel oper-
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ating system concepts, its utility was limited by its inability to execute UNIX
applications and its strong ties to a single hardware architecture that made it
difficult to port. Mach’s communication system and philosophy are derived
from Accent, but many other significant portions of the system (for example, the
virtual memory system, task and thread management) were developed from
scratch. An important goal of the Mach effort was support for multiprocessors.

Mach’s development followed an evolutionary path from BSD UNIX sys-
tems. Mach code was initially developed inside the 4.2BSD kernel, with BSD
kernel components being replaced by Mach components as the Mach compo-
nents were completed. The BSD components were updated to 4.3BSD when that
became available. By 1986, the virtual memory and communication subsys-
tems were running on the DEC VAX computer family, including multiprocessor
versions of the VAX. Versions for the IBM RT/PC and for SUN 3 workstations
followed shortly. 1987 saw the completion of the Encore Multimax and Sequent
Balance multiprocessor versions, including task and thread support, as well as
the first official releases of the system, Release 0 and Release 1.

Through Release 2, Mach provides compatibility with the corresponding
BSD systems by including much of BSD’s code in the kernel. The new features
and capabilities of Mach make the kernels in these releases larger than the
corresponding BSD kernels. Mach 3 (Figure A.1) moves the BSD code outside
of the kernel, leaving a much smaller microkernel. This system implements
only basic Mach features in the kernel; all UNIX-specific code has been evicted
to run in user-mode servers. Excluding UNIX-specific code from the kernel
allows replacement of BSD with another operating system, or the simultaneous
execution of multiple operating-system interfaces on top of the microkernel.
In addition to BSD, user-mode implementations have been developed for DOS,
the Macintosh operating system, and OSF/1. This approach has similarities
to the virtual-machine concept, but the virtual machine is defined by software
(the Mach kernel interface), rather than by hardware. As of Release 3.0, Mach
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became available on a wide variety of systems, including single-processor SUN,
Intel, IBM, and DEC machines, and multiprocessor DEC, Sequent, and Encore
systems.

Mach was propelled into the forefront of industry attention when the Open
Software Foundation (OSF) announced in 1989 that it would use Mach 2.5 as the
basis for its new operating system, OSF/1. The initial release of OSF/1 occurred
a year later, and now competes with UNIX System V, Release 4, the operating
system of choice among UNIX International (UI) members. OSF members include
key technological companies such as IBM, DEC, and HP. Mach 2.5 is also the
basis for the operating system on the NeXT workstation, the brainchild of Steve
Jobs, of Apple Computer fame. OSF is evaluating Mach 3 as the basis for a
future operating-system release, and research on Mach continues at CMU and
OSF, and elsewhere.

A.2 Design Principles

The Mach operating system was designed to provide basic mechanisms that
most current operating systems lack. The goal is to design an operating system
that is BSD compatible and, in addition, excels in the following areas.

• Support for diverse architectures, including multiprocessors with vary-
ing degrees of shared memory access: Uniform Memory Access (UMA),
Non-Uniform Memory Access (NUMA), and No Remote Memory Access
(NORMA)

• Ability to function with varying intercomputer network speeds, from wide-
area networks to high-speed local-area networks and tightly coupled mul-
tiprocessors

• Simplified kernel structure, with a small number of abstractions; in turn
these abstractions are sufficiently general to allow other operating systems
to be implemented on top of Mach

• Distributed operation, providing network transparency to clients and an
object-oriented organization both internally and externally

• Integrated memory management and interprocess communication, to pro-
vide both efficient communication of large numbers of data, as well as
communication-based memory management

• Heterogeneous system support, to make Mach widely available and inter-
operable among computer systems from multiple vendors

The designers of Mach have been heavily influenced by BSD (and by UNIX
in general), whose benefits include
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• A simple programmer interface, with a good set of primitives and a consis-
tent set of interfaces to system facilities

• Easy portability to a wide class of uniprocessors

• An extensive library of utilities and applications

• The ability to combine utilities easily via pipes

Of course, BSD was seen as having several drawbacks that need to be redressed:

• A kernel that has become the repository of many redundant features — and
that consequently is difficult to manage and modify

• Original design goals that made it difficult to provide support for multi-
processors, distributed systems, and shared program libraries; for instance,
because the kernel was designed for uniprocessors, it has no provisions for
locking code or data that other processors might be using

• Too many fundamental abstractions, providing too many similar, compet-
ing means to accomplish the same task

It should be clear that the development of Mach continues to be a huge
undertaking. The benefits of such a system are equally large, however. The
operating system runs on many existing uni- and multiprocessor architectures,
and can be easily ported to future ones. It makes research easier, because
computer scientists can add features via user-level code, instead of having
to write their own tailor-made operating system. Areas of experimentation
include operating systems, databases, reliable distributed systems, multipro-
cessor languages, security, and distributed artificial intelligence. In its current
instantiation, the Mach system is usually as efficient as are other major versions
of UNIX when performing similar tasks.

A.3 System Components

To achieve the design goals of Mach, the developers reduced the operating-
system functionality to a small set of basic abstractions, out of which all other
functionality can be derived. The Mach approach is to place as little as possible
within the kernel, but to make what is there powerful enough that all other
features can be implemented at user level.

Mach’s design philosophy is to have a simple, extensible kernel, concen-
trating on communication facilities. For instance, all requests to the kernel, and
all data movement among processes, are handled through one communication
mechanism. By limiting all data operations to one mechanism, Mach is able to
provide systemwide protection to its users by protecting the communications
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mechanism. Optimizing this one communications path can result in significant
performance gains, and is simpler than trying to optimize several paths. Mach
is extensible, because many traditionally kernel-based functions can be imple-
mented as user-level servers. For instance, all pagers (including the default
pager) can be implemented externally and called by the kernel for the user.

Mach is an example of an object-oriented system where the data and the
operations that manipulate that data are encapsulated into an abstract object.
Only the operations of the object are able to act on the entities defined in
it. The details of how these operations are implemented are hidden, as are
the internal data structures. Thus, a programmer can use an object only by
invoking its defined, exported operations. A programmer can change the
internal operations without changing the interface definition, so changes and
optimizations do not affect other aspects of system operation. The object-
oriented approach supported by Mach allows objects to reside anywhere in
a network of Mach systems, transparent to the user. The port mechanism,
discussed later in this section, makes all of this possible.

Mach’s primitive abstractions are the heart of the system, and are as fol-
lows:

• A task is an execution environment that provides the basic unit of resource
allocation. A task consists of a virtual address space and protected access
to system resources via ports. A task may contain one or more threads.

• A thread is the basic unit of execution, and must run in the context of a
task (which provides the address space). All threads within a task share
the tasks’ resources (ports, memory, and so on). There is no notion of a
”process” in Mach. Rather, a traditional process would be implemented as
a task with a single thread of control.

• A port is the basic object reference mechanism in Mach, and is imple-
mented as a kernel-protected communication channel. Communication is
accomplished by sending messages to ports; messages are queued at the
destination port if no thread is immediately ready to receive them. Ports
are protected by kernel-managed capabilities, or port rights; a task must
have a port right to send a message to a port. The programmer invokes an
operation on an object by sending a message to a port associated with that
object. The object being represented by a port receives the messages.

• A port set is a group of ports sharing a common message queue. A thread
can receive messages for a port set, and thus service multiple ports. Each
received message identifies the individual port (within the set) that it was
received from; the receiver can use this to identify the object referred to by
the message.

• A message is the basic method of communication between threads in Mach.
It is a typed collection of data objects; for each object, it may contain
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the actual data or a pointer to out-of-line data. Port rights are passed in
messages; passing port rights in messages is the only way to move them
among tasks. (Passing a port right in shared memory does not work,
because the Mach kernel will not permit the new task to use a right obtained
in this manner.)

• A memory object is a source of memory; tasks may access it by mapping
portions (or the entire object) into their address spaces. The object may
be managed by a user-mode external memory manager. One example is
a file managed by a file server; however, a memory object can be any
object for which memory-mapped access makes sense. A mapped buffer
implementation of a UNIX pipe is one example.

Figure A.2 illustrates these abstractions, which we shall elaborate in the remain-
der of this chapter.

An unusual feature of Mach, and a key to the system’s efficiency, is the
blending of memory and interprocess-communication features. Whereas some
other distributed systems (such as Solaris, with its NFS features) have special-
purpose extensions to the file system to extend it over a network, Mach pro-
vides a general-purpose, extensible merger of memory and messages at the
heart of its kernel. This feature not only allows Mach to be used for distributed
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Figure A.2 Mach’s basic abstractions.
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and parallel programming, but also helps in the implementation of the kernel
itself.

Mach connects memory management and communication (IPC) by allow-
ing each to be used in the implementation of the other. Memory management is
based on the use of memory objects. A memory object is represented by a port (or
ports), and IPC messages are sent to this port to request operations (for example,
pagein, pageout) on the object. Because IPC is used, memory objects may reside
on remote systems and be accessed transparently. The kernel caches the con-
tents of memory objects in local memory. Conversely, memory-management
techniques are used in the implementation of message passing. Where possible,
Mach passes messages by moving pointers to shared memory objects, rather
than by copying the object itself.

IPC tends to involve considerable system overhead and is generally less
efficient than is communication accomplished through shared memory, for
intrasystem messages. Because Mach is a message-based kernel, it is important
that message handling be carried out efficiently. Most of the inefficiency of
message handling in traditional operating systems is due to either the copying
of messages from one task to another (if the message is intracomputer) or
low network transfer speed (for intercomputer messages). To solve these
problems, Mach uses virtual-memory remapping to transfer the contents of
large messages. In other words, the message transfer modifies the receiving
task’s address space to include a copy of the message contents. Virtual copy, or
copy-on-write, techniques are used to avoid or delay the actual copying of the
data. There are several advantages to this approach:

• Increased flexibility in memory management to user programs

• Greater generality, allowing the virtual copy approach to be used in tightly
and loosely coupled computers

• Improved performance over UNIX message passing

• Easier task migration; because ports are location independent, a task and
all its ports can be moved from one machine to another; all tasks that pre-
viously communicated with the moved task can continue to do so because
they reference a task by only its ports and communicate via messages to
these ports

We shall detail the operation of process management, IPC, and memory
management. Then, we shall discuss Mach’s chameleonlike ability to support
multiple operating-system interfaces.
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A.4 Process Management

A task can be thought of as a traditional process that does not have an instruc-
tion pointer or a register set. A task contains a virtual address space, a set of
port rights, and accounting information. A task is a passive entity that does
nothing unless it has one or more threads executing in it.

A.4.1 Basic Structure

A task containing one thread is similar to a UNIX process. Just as a fork system
call produces a new UNIX process, Mach creates a new task to emulate this
behavior. The new task’s memory is a duplicate of the parent’s address space,
as dictated by the inheritance attributes of the parent’s memory. The new task
contains one thread, which is started at the same point as the creating fork call
in the parent. Threads and tasks may also be suspended and resumed.

Threads are especially useful in server applications, which are common in
UNIX, since one task can have multiple threads to service multiple requests
to the task. They also allow efficient use of parallel computing resources.
Rather than having one process on each processor (with the corresponding
performance penalty and operating-system overhead), a task may have its
threads spread among parallel processors. Threads also add efficiency to user-
level programs. For instance, in UNIX, an entire process must wait when a
page fault occurs, or when a system call is executed. In a task with multiple
threads, only the thread that causes the page fault or executes a system call
is delayed; all other threads continue executing. Because Mach has kernel-
supported threads (see Section 4.5), the threads have some cost associated with
them. They must have supporting data structures in the kernel, and more
complex kernel-scheduling algorithms must be provided. These algorithms
and thread states are discussed in Section 4.5.

At the user level, threads may be in one of two states.

• Running: The thread is either executing or waiting to be allocated a
processor. A thread is considered to be running even if it is blocked within
the kernel (waiting for a page fault to be satisfied, for instance).

• Suspended: The thread is neither executing on a processor nor waiting to
be allocated a processor. A thread can resume its execution only if it is
returned to the running state.

These two states are also associated with a task. An operation on a task affects
all threads in a task, so suspending a task involves suspending all the threads
in it. Task and thread suspensions are separate, independent mechanisms,
however, so resuming a thread in a suspended task does not resume the task.

Mach provides primitives from which thread-synchronization tools can
be built. This primitives provision is consistent with Mach’s philosophy of
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providing minimum yet sufficient functionality in the kernel. The Mach IPC
facility can be used for synchronization, with processes exchanging messages
at rendezvous points. Thread-level synchronization is provided by calls to
start and stop threads at appropriate times. A suspend count is kept for each
thread. This count allows multiple suspend calls to be executed on a thread,
and only when an equal number of resume calls occur is the thread resumed.
Unfortunately, this feature has its own limitation. Because it is an error for a
start call to be executed before a stop call (the suspend count would become
negative), these routines cannot be used to synchronize shared data access.
However, wait and signal operations associated with semaphores, and used for
synchronization, can be implemented via the IPC calls. We discuss this method
in Section A.5.

A.4.2 The C Threads Package

Mach provides low-level but flexible routines instead of polished, large, and
more restrictive functions. Rather than making programmers work at this low
level, Mach provides many higher-level interfaces for programming in C and
other languages. For instance, the C Threads package provides multiple threads
of control, shared variables, mutual exclusion for critical sections, and condition
variables for synchronization. In fact, C Threads is one of the major influences
of the POSIX P Threads standard, which many operating systems are being
modified to support. As a result there are strong similarities between the C
Threads and P Threads programming interfaces. The thread-control routines
include calls to perform these tasks:

• Create a new thread within a task, given a function to execute and param-
eters as input. The thread then executes concurrently with the creating
thread, which receives a thread identifier when the call returns.

• Destroy the calling thread, and return a value to the creating thread.

• Wait for a specific thread to terminate before allowing the calling thread
to continue. This call is a synchronization tool, much like the UNIX wait
system calls.

• Yield use of a processor, signaling that the scheduler may run another
thread at this point. This call is also useful in the presence of a preemptive
scheduler, as it can be used to relinquish the CPU voluntarily before the time
quantum (scheduling interval) expires if a thread has no use for the CPU.

Mutual exclusion is achieved through the use of spinlocks, as were discussed
in Chapter 6. The routines associated with mutual exclusion are these:

• The routine mutex alloc dynamically creates a mutex variable.

• The routine mutex free deallocates a dynamically created mutex variable.
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• The routine mutex lock locks a mutex variable. The executing thread loops
in a spinlock until the lock is attained. A deadlock results if a thread
with a lock tries to lock the same mutex variable. Bounded waiting is
not guaranteed by the C Threads package. Rather, it is dependent on the
hardware instructions used to implement the mutex routines.

• The routine mutex unlock unlocks a mutex variable, much like the typical
signal operation of a semaphore.

General synchronization without busy waiting can be achieved through the use
of condition variables, which can be used to implement a condition critical region
or a monitor, as was described in Chapter 6. A condition variable is associated
with a mutex variable, and reflects a Boolean state of that variable. The routines
associated with general synchronization are these:

• The routine condition alloc dynamically allocates a condition variable.

• The routine condition free deletes a dynamically created condition variable
allocated as result of condition alloc.

• The routine condition wait unlocks the associated mutex variable, and
blocks the thread until a condition signal is executed on the condition vari-
able, indicating that the event being waited for may have occurred. The
mutex variable is then locked, and the thread continues. A condition signal
does not guarantee that the condition still holds when the unblocked thread
finally returns from its condition wait call, so the awakened thread must
loop, executing the condition wait routine until it is unblocked and the
condition holds.

As an example of the C Threads routines, consider the bounded-buffer
synchronization problem of Section 6.5.1. The producer and consumer are
represented as threads that access the common bounded-buffer pool. We use
a mutex variable to protect the buffer while it is being updated. Once we have
exclusive access to the buffer, we use condition variables to block the producer
thread if the buffer is full, and to block the consumer thread if the buffer is
empty. Although this program normally would be written in the C language on
a Mach system, we shall use the familiar Pascal-like syntax of previous chapters
for clarity. As in Chapter 6, we assume that the buffer consists of n slots, each
capable of holding one item. The mutex semaphore provides mutual exclusion
for accesses to the buffer pool and is initialized to the value 1. The empty and
full semaphores count the number of empty and full buffers, respectively. The
semaphore empty is initialized to the value n; the semaphore full is initialized to
the value 0. The condition variable nonempty is true while the buffer has items
in it, and nonfull is true if the buffer has an empty slot.

The first step includes the allocation of the mutex and condition variables:

mutex alloc(mutex); condition alloc(nonempty, nonfull);
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repeat
...

produce an item into nextp
...

mutex lock(mutex);
while(full)

condition wait(nonfull, mutex);
...

add nextp to buffer
...

condition signal(nonempty);
mutex unlock(mutex);

until false;

Figure A.3 The structure of the producer process.

The code for the producer thread is shown in Figure A.3; the code for the
consumer thread is shown in Figure A.4. When the program terminates, the
mutex and condition variables need to be deallocated:

mutex free(mutex); condition free(nonempty, nonfull);

A.4.3 The CPU Scheduler

The CPU scheduler for a thread-based multiprocessor operating system is more
complex than are its process-based relatives. There are generally more threads
in a multithreaded system than there are processes in a multitasking system.
Keeping track of multiple processors is also difficult, and is a relatively new area

repeat
mutex lock(mutex);
while(empty)

condition wait(nonempty, mutex);
...

remove an item from the buffer to nextc
...

condition signal(nonfull);
mutex unlock(mutex);

...
consume the item in nextc

...
until false;

Figure A.4 The structure of the consumer process.
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of research. Mach uses a simple policy to keep the scheduler manageable. Only
threads are scheduled, so no knowledge of tasks is needed in the scheduler. All
threads compete equally for resources, including time quanta.

Each thread has an associated priority number ranging from 0 through 127,
which is based on the exponential average of its usage of the CPU. That is, a
thread that recently used the CPU for a large amount of time has the lowest
priority. Mach uses the priority to place the thread in one of 32 global run
queues. These queues are searched in priority order for waiting threads when
a processor becomes idle. Mach also keeps per-processor, or local, run queues.
A local run queue is used for threads that are bound to an individual processor.
For instance, a device driver for a device connected to an individual CPU must
run on only that CPU.

Instead of there being a central dispatcher that assigns threads to pro-
cessors, each processor consults the local and global run queues to select the
appropriate next thread to run. Threads in the local run queue have absolute
priority over those in the global queues, because it is assumed that they are
performing some chore for the kernel. The run queues (like most other objects
in Mach) are locked when they are modified to avoid simultaneous changes by
multiple processors. To speed dispatching of threads on the global run queue,
Mach maintains a list of idle processors.

Additional scheduling difficulties arise from the multiprocessor nature of
Mach. A fixed time quantum is not appropriate because there may be fewer
runable threads than there are available processors, for instance. It would be
wasteful to interrupt a thread with a context switch to the kernel when that
thread’s quantum runs out, only to have the thread be placed right back in
the running state. Thus, instead of using a fixed-length quantum, Mach varies
the size of the time quantum inversely with the total number of threads in the
system. It keeps the time quantum over the entire system constant, however.
For example, in a system with 10 processors, 11 threads, and a 100-millisecond
quantum, a context switch needs to occur on each processor only once per
second to maintain the desired quantum.

Of course, there are still complications to be considered. Even relinquishing
the CPU while waiting for a resource is more difficult than it is on traditional
operating systems. First, a call must be issued by a thread to alert the scheduler
that the thread is about to block. This alert avoids race conditions and dead-
locks, which could occur when the execution takes place in a multiprocessor
environment. A second call actually causes the thread to be moved off the run
queue until the appropriate event occurs. There are many other internal thread
states that are used by the scheduler to control thread execution.

A.4.4 Exception Handling

Mach was designed to provide a single, simple, consistent exception-handling
system, with support for standard as well as user-defined exceptions. To avoid
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redundancy in the kernel, Mach uses kernel primitives whenever possible. For
instance, an exception handler is just another thread in the task in which the
exception occurs. Remote procedure call (RPC) messages are used to synchro-
nize the execution of the thread causing the exception (the “victim” ) and that of
the handler, and to communicate information about the exception between the
victim and handler. Mach exceptions are also used to emulate the BSD signal
package, as described later in this section.

Disruptions to normal program execution come in two varieties: internally
generated exceptions and external interrupts. Interrupts are asynchronously
generated disruptions of a thread or task, whereas exceptions are caused by the
occurrence of unusual conditions during a thread’s execution. Mach’s general-
purpose exception facility is used for error detection and debugger support.
This facility is also useful for other reasons, such as taking a core dump of a
bad task, allowing tasks to handle their own errors (mostly arithmetic), and
emulating instructions not implemented in hardware.

Mach supports two different granularities of exception handling. Error
handling is supported by per-thread exception handling, whereas debuggers
use per-task handling. It makes little sense to try to debug only one thread, or to
have exceptions from multiple threads invoke multiple debuggers. Aside from
this distinction, the only other difference between the two types of exceptions
lies in their inheritance from a parent task. Taskwide exception-handling
facilities are passed from the parent to child tasks, so debuggers are able to
manipulate an entire tree of tasks. Error handlers are not inherited, and default
to no handler at thread- and task-creation time. Finally, error handlers take
precedence over debuggers if the exceptions occur simultaneously. The reason
for this approach is that error handlers are normally part of the task, and
therefore should execute normally even in the presence of a debugger.

Exception handling proceeds as follows:

• The victim thread causes notification of an exception’s occurrence via a raise
RPC message being sent to the handler.

• The victim then calls a routine to wait until the exception is handled.

• The handler receives notification of the exception, usually including infor-
mation about the exception, the thread, and the task causing the exception.

• The handler performs its function according to the type of exception.
The handler’s action involves clearing the exception, causing the victim to
resume, or terminating the victim thread.

To support the execution of BSD programs, Mach needs to support BSD-
style signals. Signals provide software generated interrupts and exceptions.
Unfortunately, signals are of limited functionality in multithreaded operating
systems. The first problem is that, in UNIX, a signal’s handler must be a routine
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in the process receiving the signal. If the signal is caused by a problem in
the process itself (for example, a division by zero), the problem cannot be
remedied, because a process has limited access to its own context. A second,
more troublesome aspect of signals is that they were designed for only single-
threaded programs. For instance, it makes no sense for all threads in a task to
get a signal, but how can a signal be seen by only one thread?

Because the signal system must work correctly with multithreaded appli-
cations for Mach to run 4.3BSD programs, signals could not be abandoned.
Producing a functionally correct signal package required several rewrites of the
code, however! A final problem with UNIX signals is that they can be lost.
This loss occurs when another signal of the same type occurs before the first is
handled. Mach exceptions are queued as a result of their RPC implementation.

Externally generated signals, including those sent from one BSD process to
another, are processed by the BSD server section of the Mach 2.5 kernel. Their
behavior is therefore the same as it is under BSD. Hardware exceptions are a
different matter, because BSD programs expect to receive hardware exceptions
as signals. Therefore, a hardware exception caused by a thread must arrive at
the thread as a signal. So that this result is produced, hardware exceptions are
converted to exception RPCs. For tasks and threads that do not make explicit
use of the Mach exception-handling facility, the destination of this RPC defaults
to an in-kernel task. This task has only one purpose: Its thread runs in a
continuous loop, receiving these exception RPCs. For each RPC, it converts the
exception into the appropriate signal, which is sent to the thread that caused the
hardware exception. It then completes the RPC, clearing the original exception
condition. With the completion of the RPC, the initiating thread reenters the run
state. It immediately sees the signal and executes its signal-handling code. In
this manner, all hardware exceptions begin in a uniform way — as exceptions
RPCs. Threads not designed to handle such exceptions, however, receive the
exceptions as they would on a standard BSD system — as signals. In Mach
3.0, the signal-handling code is moved entirely into a server, but the overall
structure and flow of control is similar to those of Mach 2.5.

A.5 Interprocess Communication

Most commercial operating systems, such as UNIX, provide communication
between processes, and between hosts with fixed, global names (internet
addresses). There is no location independence of facilities, because any remote
system needing to use a facility must know the name of the system providing
that facility. Usually, data in the messages are untyped streams of bytes. Mach
simplifies this picture by sending messages between location-independent
ports. The messages contain typed data for ease of interpretation. All BSD
communication methods can be implemented with this simplified system.
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The two components of Mach IPC are ports and messages. Almost everything
in Mach is an object, and all objects are addressed via their communications
ports. Messages are sent to these ports to initiate operations on the objects
by the routines that implement the objects. By depending on only ports
and messages for all communication, Mach delivers location independence of
objects and security of communication. Data independence is provided by the
NetMsgServer task, as discussed later. Mach ensures security by requiring that
message senders and receivers have rights. A right consists of a port name
and a capability (send or receive) on that port, and is much like a capability in
object-oriented systems. There can be only one task with receive rights to any
given port, but many tasks may have send rights. When an object is created, its
creator also allocates a port to represent the object, and obtains the access rights
to that port. Rights can be given out by the creator of the object (including the
kernel), and are passed in messages. If the holder of a receive right sends that
right in a message, the receiver of the message gains the right and the sender
loses it. A task may allocate ports to allow access to any objects it owns, or for
communication. The destruction of either a port or the holder of the receive
right causes the revocation of all rights to that port, and the tasks holding send
rights can be notified if desired.

A.5.1 Ports

A port is implemented as a protected, bounded queue within the kernel of the
system on which the object resides. If a queue is full, a sender may abort the
send, wait for a slot to become available in the queue, or have the kernel deliver
the message for it.

There are several system calls to provide the port functionality:

• Allocate a new port in a specified task and give the caller’s task all access
rights to the new port. The port name is returned.

• Deallocate a task’s access rights to a port. If the task holds the receive right,
the port is destroyed and all other tasks with send rights are, potentially,
notified.

• Get the current status of a task’s port.

• Create a backup port, which is given the receive right for a port if the task
containing the receive right requests its deallocation (or terminates).

When a task is created, the kernel creates several ports for it. The function
task self returns the name of the port that represents the task in calls to the
kernel. For instance, for a task to allocate a new port, it would call port allocate
with task self as the name of the task that will own the port. Thread creation
results in a similar thread self thread kernel port. This scheme is similar to the
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standard process-id concept found in UNIX. Another port created for a task is
returned by task notify, and is the name of the port to which the kernel will send
event-notification messages (such as notifications of port terminations).

Ports can also be collected into port sets. This facility is useful if one thread
is to service requests coming in on multiple ports (for example, for multiple
objects). A port may be a member of at most one port set at a time, and, if a
port is in a set, it may not be used directly to receive messages. Instead, the
message will be routed to the port set’s queue. A port set may not be passed in
messages, unlike a port. Port sets are objects that serve a purpose similar to the
4.3BSD select system call, but they are more efficient.

A.5.2 Messages

A message consists of a fixed-length header and a variable number of typed
data objects. The header contains the destination’s port name, the name of
the reply port to which return messages should be sent, and the length of the
message (see Figure A.5). The data in the message (in-line data) were limited to
less than 8K in Mach 2.5 systems, but Mach 3.0 has no limit. Any data exceeding
that limit must be sent in multiple messages, or more likely via reference by a
pointer in a message (out-of-line data, as we shall describe shortly). Each data
section may be a simple type (numbers or characters), port rights, or pointers
to out-of-line data. Each section has an associated type, so that the receiver

destination port
reply port
size / operation
pure typed data
port rights
out-of-line-data

message control

. . .

memory cache object memory cache object

port

message queue

port

messagemessage

Figure A.5 Mach messages.
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can unpack the data correctly even if it uses a byte ordering different from that
used by the sender. The kernel also inspects the message for certain types of
data. For instance, the kernel must process port information within a message,
either by translating the port name into an internal port data structure address,
or by forwarding it for processing to the NetMsgServer, as we shall explain.

The use of pointers in a message provides the means to transfer the entire
address space of a task in one single message. The kernel also must process
pointers to out-of-line data, as a pointer to data in the sender’s address space
would be invalid in the receiver’s — especially if the sender and receiver reside
on different systems! Generally, systems send messages by copying the data
from the sender to the receiver. Because this technique can be inefficient,
especially in the case of large messages, Mach optimizes this procedure. The
data referenced by a pointer in a message being sent to a port on the same
system are not copied between the sender and the receiver. Instead, the address
map of the receiving task is modified to include a copy-on-write copy of the
pages of the message. This operation is much faster than a data copy, and
makes message passing efficient. In essence, message passing is implemented
via virtual-memory management.

In Version 2.5, this operation was implemented in two phases. A pointer
to a region of memory caused the kernel to map that region of memory into
its own space temporarily, setting the sender’s memory map to copy-on-write
mode to ensure that any modifications did not affect the original version of
the data. When a message was received at its destination, the kernel moved
its mapping to the receiver’s address space, using a newly allocated region of
virtual memory within that task.

In Version 3, this process was simplified. The kernel creates a data structure
that would be a copy of the region if it were part of an address map. On receipt,
this data structure is added to the receiver’s map and becomes a copy accessible
to the receiver.

The newly allocated regions in a task do not need to be contiguous with
previous allocations, so Mach virtual memory is said to be sparse, consisting of
regions of data separated by unallocated addresses. A full message transfer is
shown in Figure A.6.

A.5.3 The NetMsgServer

For a message to be sent between computers, the destination of a message
must be located, and the message must be transmitted to the destination.
UNIX traditionally leaves these mechanisms to the low-level network protocols,
which require the use of statically assigned communication endpoints (for
example, the port number for services based on TCP or UDP). One of Mach’s
tenets is that all objects within the system are location independent, and that the
location is transparent to the user. This tenet requires Mach to provide location-
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Figure A.6 Mach message transfer.

transparent naming and transport to extend IPC across multiple computers.
This naming and transport are performed by the Network Message Server or
NetMsgServer, a user-level capability-based networking daemon that forwards
messages between hosts. It also provides a primitive networkwide name
service that allows tasks to register ports for lookup by tasks on any other
computer in the network. Mach ports can be transferred only in messages,
and messages must be sent to ports; the primitive name service solves the
problem of transferring the first port that allows tasks on different computers
to exchange messages. Subsequent IPC interactions are fully transparent; the
NetMsgServer tracks all rights and out-of-line memory passed in intercomputer
messages, and arranges for the appropriate transfers. The NetMsgServers
maintain among themselves a distributed database of port rights that have
been transferred between computers and of the ports to which these rights
correspond.

The kernel uses the NetMsgServer when a message needs to be sent to
a port that is not on the kernel’s computer. Mach’s kernel IPC is used to
transfer the message to the local NetMsgServer. The NetMsgServer then uses
whatever network protocols are appropriate to transfer the message to its peer
on the other computer; the notion of a NetMsgServer is protocol-independent,
and NetMsgServers have been built that use various protocols. Of course,
the NetMsgServers involved in a transfer must agree on the protocol used.
Finally, the NetMsgServer on the destination computer uses that kernel’s IPC
to send the message to the correct destination task. The ability to extend local
IPC transparently across nodes is supported by the use of proxy ports. When
a send right is transferred from one computer to another, the NetMsgServer
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on the destination computer creates a new port, or proxy, to represent the
original port at the destination. Messages sent to this proxy are received by
the NetMsgServer and are forwarded transparently to the original port; this
procedure is one example of how the NetMsgServers cooperate to make a proxy
indistinguishable from the original port.

Because Mach is designed to function in a network of heterogeneous sys-
tems, it must provide a way to send between systems data that are formatted
in a way that is understandable by both the sender and receiver. Unfortunately,
computers vary the format in which they store types of data. For instance, an
integer on one system might take 2 bytes to store, and the most significant byte
might be stored before the least significant one. Another system might reverse
this ordering. The NetMsgServer therefore uses the type information stored in
a message to translate the data from the sender’s to the receiver’s format. In
this way, all data are represented correctly when they reach their destination.

The NetMsgServer on a given computer accepts RPCs that add, look up, and
remove network ports from the NetMsgServer’s name service. As a security
precaution, a port value provided in an add request must match that in the
remove request for a thread to ask for a port name to be removed from the
database.

As an example of the NetMsgServer’s operation, consider a thread on node
A sending a message to a port that happens to be in a task on node B. The
program simply sends a message to a port to which it has a send right. The
message is first passed to the kernel, which delivers it to its first recipient,
the NetMsgServer on node A. The NetMsgServer then contacts (through its
database information) the NetMsgServer on node B and sends the message.
The NetMsgServer on node B then presents the message to the kernel with the
appropriate local port for node B. The kernel finally provides the message to
the receiving task when a thread in that task executes a msg receive call. This
sequence of events is shown in Figure A.7.

Mach 3.0 provides an alternative to the NetMsgServer as part of its
improved support for NORMA multiprocessors. The NORMA IPC subsystem of
Mach 3.0 implements functionality similar to the NetMsgServer directly in the
Mach kernel, providing much more efficient internode IPC for multicomputers
with fast interconnection hardware. For example, the time-consuming copying
of messages between the NetMsgServer and the kernel is eliminated. Use of
NORMA IPC does not exclude use of the NetMsgServer; the NetMsgServer can
still be used to provide MACH IPC service over networks that link a NORMA
multiprocessor to other computers. In addition to NORMA IPC, Mach 3.0 also
provides support for memory management across a NORMA system, and the
ability for a task in such a system to create child tasks on nodes other than
its own. These features support the implementation of a single-system-image
operating system on a NORMA multiprocessor; the multiprocessor behaves like
one large system, rather than like an assemblage of smaller systems (for both
users and applications).
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Figure A.7 Network IPC forwarding by NetMsgServer.

A.5.4 Synchronization Through IPC

The IPC mechanism is extremely flexible, and is used throughout Mach. For
example, it may be used for thread synchronization. A port may be used as a
synchronization variable, and may have n messages sent to it for n resources.
Any thread wishing to use a resource executes a receive call on that port.
The thread will receive a message if the resource is available; otherwise, it
will wait on the port until a message is available there. To return a resource
after use, the thread can send a message to the port. In this regard, receiving
is equivalent to the semaphore operation wait, and sending is equivalent to
signal. This method can be used for synchronizing semaphore operations
among threads in the same task, but cannot be used for synchronization among
tasks, because only one task may have receive rights to a port. For more general-
purpose semaphores, a simple daemon may be written that implements the
same method.

A.6 Memory Management

Given the object-oriented nature of Mach, it is not surprising that a principle
abstraction in Mach is the memory object. Memory objects are used to manage
secondary storage, and generally represent files, pipes, or other data that are
mapped into virtual memory for reading and writing (Figure A.8). Memory
objects may be backed by user-level memory managers, which take the place
of the more traditional kernel-incorporated virtual-memory pager found in
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other operating systems. In contrast to the traditional approach of having
the kernel provide management of secondary storage, Mach treats secondary-
storage objects (usually files) as it does all other objects in the system. Each
object has a port associated with it, and may be manipulated by messages
being sent to its port. Memory objects — unlike the memory-management
routines in monolithic, traditional kernels — allow easy experimentation with
new memory-manipulation algorithms.

A.6.1 Basic Structure

The virtual address space of a task is generally sparse, consisting of many holes
of unallocated space. For instance, a memory-mapped file is placed in some set
of addresses. Large messages are also transferred as shared memory segments.
For each of these segments, a section of virtual-memory address is used to
provide the threads with access to the message. As new items are mapped
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or removed from the address space, holes of unallocated memory appear in the
address space.

Mach makes no attempt to compress the address space, although a task
may fail (crash) if it has no room for a requested region in its address space.
Given that address spaces are 4 gigabytes or more, this limitation is not cur-
rently a problem. However, maintaining a regular page table for a 4 gigabyte
address space for each task, especially one with holes in it, would use excessive
amounts of memory (1 megabyte or more). The key to sparse address spaces
is that page-table space is used for only currently allocated regions. When
a page fault occurs, the kernel must check to see whether the page is in a
valid region, rather than simply indexing into the page table and checking the
entry. Although the resulting lookup is more complex, the benefits of reduced
memory-storage requirements and simpler address-space maintenance make
the approach worthwhile.

Mach also has system calls to support standard virtual-memory function-
ality, including the allocation, deallocation, and copying of virtual memory.
When allocating a new virtual-memory object, the thread may provide an
address for the object or may let the kernel choose the address. Physical mem-
ory is not allocated until pages in this object are accessed. The object’s backing
store is managed by the default pager (discussed in Section A.6.2). Virtual-
memory objects are also allocated automatically when a task receives a message
containing out-of-line data.

Associated system calls return information about a memory object in a
task’s address space, change the access protection of the object, and specify
how an object is to be passed to child tasks at the time of their creation (shared,
copy-on-write, or not present).

A.6.2 User-Level Memory Managers
A secondary-storage object is usually mapped into the virtual address space of
a task. Mach maintains a cache of memory-resident pages of all mapped objects,
as in other virtual-memory implementations. However, a page fault occurring
when a thread accesses a nonresident page is executed as a message to the
object’s port. The concept of a memory object being created and serviced by
nonkernel tasks (unlike threads, for instance, which are created and maintained
by only the kernel) is important. The end result is that, in the traditional sense,
memory can be paged by user-written memory managers. When the object is
destroyed, it is up to the memory manager to write back any changed pages
to secondary storage. No assumptions are made by Mach about the content or
importance of memory objects, so the memory objects are independent of the
kernel.

There are several circumstances in which user-level memory managers are
insufficient. For instance, a task allocating a new region of virtual memory
might not have a memory manager assigned to that region, since it does
not represent a secondary-storage object (but must be paged), or a memory
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manager could fail to perform pageout. Mach itself also needs a memory
manager to take care of its memory needs. For these cases, Mach provides
a default memory manager. The Mach 2.5 default memory manager uses the
standard file system to store data that must be written to disk, rather than
requiring a separate swap space, as in 4.3BSD. In Mach 3.0 (and OSF/1), the
default memory manager is capable of using either files in a standard filesystem
or dedicated disk partitions. The default memory manager has an interface
similar to that of the user-level ones, but with some extensions to support its
role as the memory manager that can be relied on to perform pageout when
user-level managers fail to do so.

Pageout policy is implemented by an internal kernel thread, the pageout
daemon. A paging algorithm based on FIFO with second chance (Section 9.5.4)
is used to select pages for replacement. The selected pages are sent to the
appropriate manager (either user level or default) for actual pageout. A user-
level manager may be more intelligent than the default manager, and may
implement a different paging algorithm suitable to the object it is backing (that
is, by selecting some other page and forcibly paging it out). If a user-level
manager fails to reduce the resident set of pages when asked to do so by the
kernel, the default memory manager is invoked and it pages out the user-level
manager to reduce the user-level manager’s resident set size. Should the user-
level manager recover from the problem that prevented it from performing its
own pageouts, it will touch these pages (causing the kernel to page them in
again), and can then page them out as it sees fit.

If a thread needs access to data in a memory object (for instance, a file), it
invokes the vm map system call. Included in this system call is a port which
identifies the object, and the memory manager which is responsible for the
region. The kernel executes calls on this port when data are to be read or
written in that region. An added complexity is that the kernel makes these calls
asynchronously, since it would not be reasonable for the kernel to be waiting
on a user-level thread. Unlike the situation with pageout, the kernel has no
recourse if its request is not satisfied by the external memory manager. The
kernel has no knowledge of the contents of an object or of how that object must
be manipulated.

Memory managers are responsible for the consistency of the contents of
a memory object mapped by tasks on different machines (tasks on a single
machine share a single copy of a mapped memory object). Consider a situation
in which tasks on two different machines attempt to modify the same page
of an object concurrently. It is up to the manager to decide whether these
modifications must be serialized. A conservative manager implementing strict
memory consistency would force the modifications to be serialized by granting
write access to only one kernel at a time. A more sophisticated manager could
allow both accesses to proceed concurrently (for example, if the manager knew
that the two tasks were modifying distinct areas within the page, and that it
could merge the modifications successfully at some future time). Note that most



898 Appendix A The Mach System

external memory managers written for Mach (for example, those implementing
mapped files) do not implement logic for dealing with multiple kernels, due to
the complexity of such logic.

When the first vm map call is made on a memory object, the kernel sends
a message to the memory manager port passed in the call, invoking the mem-
ory manager init routine, which the memory manager must provide as part of its
support of a memory object. The two ports passed to the memory manager are a
control port and a name port. The control port is used by the memory manager to
provide data to the kernel (for example, pages to be made resident). Name ports
are used throughout Mach. They do not receive messages, but rather are used
simply as a point of reference and comparison. Finally, the memory object must
respond to a memory manager init call with a memory object set attributes call to
indicate that it is ready to accept requests. When all tasks with send rights to a
memory object relinquish those rights, the kernel deallocates the object’s ports,
thus freeing the memory manager and memory object for destruction.

There are several kernel calls that are needed to support external memory
managers. The vm map call has already been discussed in the paragraph above.
There are also commands to get and set attributes and to provide page-level
locking when it is required (for instance, after a page fault has occurred but
before the memory manager has returned the appropriate data). Another call is
used by the memory manager to pass a page (or multiple pages, if read-ahead
is being used) to the kernel in response to a page fault. This call is necessary
since the kernel invokes the memory manager asynchronously. There are also
several calls to allow the memory manager to report errors to the kernel.

The memory manager itself must provide support for several calls so that it
can support an object. We have already discussed memory object init and others.
When a thread causes a page fault on a memory object’s page, the kernel sends a
memory object data request to the memory object’s port on behalf of the faulting
thread. The thread is placed in wait state until the memory manager either
returns the page in a memory object data provided call, or returns an appropriate
error to the kernel. Any of the pages that have been modified, or any precious
pages that the kernel needs to remove from resident memory (due to page
aging, for instance), are sent to the memory object via memory object data write.
Precious pages are pages that may not have been modified, but that cannot be
discarded as they otherwise would, because the memory manager no longer
retains a copy. The memory manager declares these pages to be precious
and expects the kernel to return them when they are removed from memory.
Precious pages save unnecessary duplication and copying of memory.

Again, there are several other calls for locking, protection information and
modification, and the other details with which all virtual memory systems must
deal.

In the current version, Mach does not allow external memory managers
to affect the page-replacement algorithm directly. Mach does not export the
memory-access information that would be needed for an external task to select
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the least recently used page, for instance. Methods of providing such informa-
tion are currently under investigation. An external memory manager is still
useful for a variety of reasons, however:

• It may reject the kernel’s replacement victim if it knows of a better candidate
(for instance, MRU page replacement).

• It may monitor the memory object it is backing, and request pages to be
paged out before the memory usage invokes Mach’s pageout daemon.

• It is especially important in maintaining consistency of secondary storage
for threads on multiple processors, as we shall show in Section A.6.3.

• It can control the order of operations on secondary storage, to enforce
consistency constraints demanded by database management systems. For
example, in transaction logging, transactions must be written to a log file
on disk before they modify the database data.

• It can control mapped file access.

A.6.3 Shared Memory

Mach uses shared memory to reduce the complexity of various system facilities,
as well as to provide these features in an efficient manner. Shared memory
generally provides extremely fast interprocess communication, reduces over-
head in file management, and helps to support multiprocessing and database
management. Mach does not use shared memory for all these traditional
shared-memory roles, however. For instance, all threads in a task share that
task’s memory, so no formal shared-memory facility is needed within a task.
However, Mach must still provide traditional shared memory to support other
operating-system constructs, such as the UNIX fork system call.

It is obviously difficult for tasks on multiple machines to share memory, and
to maintain data consistency. Mach does not try to solve this problem directly;
rather, it provides facilities to allow the problem to be solved. Mach supports
consistent shared memory only when the memory is shared by tasks running
on processors that share memory. A parent task is able to declare which regions
of memory are to be inherited by its children, and which are to be readable–
writable. This scheme is different from copy-on-write inheritance, in which
each task maintains its own copy of any changed pages. A writable object is
addressed from each task’s address map, and all changes are made to the same
copy. The threads within the tasks are responsible for coordinating changes
to memory so that they do not interfere with one another (by writing to the
same location concurrently). This coordination may be done through normal
synchronization methods: critical sections or mutual-exclusion locks.

For the case of memory shared among separate machines, Mach allows the
use of external memory managers. If a set of unrelated tasks wishes to share
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a section of memory, the tasks may use the same external memory manager
and access the same secondary-storage areas through it. The implementor of
this system would need to write the tasks and the external pager. This pager
could be as simple or as complicated as needed. A simple implementation
would allow no readers while a page was being written to. Any write attempt
would cause the pager to invalidate the page in all tasks currently accessing
it. The pager would then allow the write and would revalidate the readers
with the new version of the page. The readers would simply wait on a page
fault until the page again became available. Mach provides such a memory
manager: the Network Memory Server (NetMemServer). For multicomputers,
the NORMA configuration of Mach 3.0 provides similar support as a standard
part of the kernel. This XMM subsystem allows multicomputer systems to use
external memory managers that do not incorporate logic for dealing with multi-
ple kernels; the XMM subsystem is responsible for maintaining data consistency
among multiple kernels that share memory, and makes these kernels appear to
be a single kernel to the memory manager. The XMM subsystem also imple-
ments virtual copy logic for the mapped objects that it manages. This virtual
copy logic includes both copy-on-reference among multicomputer kernels, and
sophisticated copy-on-write optimizations.

A.7 Programmer Interface

There are several levels at which a programmer may work within Mach. There
is, of course, the system-call level, which, in Mach 2.5, is equivalent to the 4.3BSD
system-call interface. Version 2.5 includes most of 4.3BSD as one thread in the
kernel. A BSD system call traps to the kernel and is serviced by this thread on
behalf of caller, much as standard BSD would handle it. The emulation is not
multithreaded, so it has limited efficiency.

Mach 3.0 has moved from the single-server model to support of multiple
servers. It has therefore become a true microkernel without the full features
normally found in a kernel. Rather, full functionality can be provided via
emulation libraries, servers, or a combination of the two. In keeping with the
definition of a microkernel, the emulation libraries and servers run outside
the kernel at user level. In this way, multiple operating systems can run
concurrently on one Mach 3.0 kernel.

An emulation library is a set of routines that lives in a read-only part of a
program’s address space. Any operating-system calls the program makes are
translated into subroutine calls to the library. Single-user operating systems,
such as MS-DOS and the Macintosh operating system, have been implemented
solely as emulation libraries. For efficiency reasons, the emulation library lives
in the address space of the program needing its functionality, but in theory
could be a separate task.
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More complex operating systems are emulated through the use of libraries
and one or more servers. System calls that cannot be implemented in the
library are redirected to the appropriate server. Servers can be multithreaded
for improved efficiency. BSD and OSF/1 are implemented as single multi-
threaded servers. Systems can be decomposed into multiple servers for greater
modularity.

Functionally, a system call starts in a task, and passes through the kernel
before being redirected, if appropriate, to the library in the task’s address space
or to a server. Although this extra transfer of control will decrease the efficiency
of Mach, this decrease is somewhat ameliorated by the ability for multiple
threads to be executing BSD-like code concurrently.

At the next higher programming level is the C Threads package. This
package is a run-time library that provides a C language interface to the basic
Mach threads primitives. It provides convenient access to these primitives,
including routines for the forking and joining of threads, mutual exclusion
through mutex variables (Section A.4.2), and synchronization through use of
condition variables. Unfortunately, it is not appropriate for the C Threads
package to be used between systems that share no memory (NORMA systems),
since it depends on shared memory to implement its constructs. There is
currently no equivalent of C Threads for NORMA systems. Other run-time
libraries have been written for Mach, including threads support for other
languages.

Although the use of primitives makes Mach flexible, it also makes many
programming tasks repetitive. For instance, significant amounts of code are
associated with sending and receiving messages in each task that uses messages
(which, in Mach, is most tasks). The designers of Mach therefore provide an
interface generator (or stub generator) called MIG. MIG is essentially a compiler
that takes as input a definition of the interface to be used (declarations of
variables, types and procedures), and generates the RPC interface code needed
to send and receive the messages fitting this definition and to connect the
messages to the sending and receiving threads.

A.8 Summary

The Mach operating system is designed to incorporate the many recent inno-
vations in operating-system research to produce a fully functional, technically
advanced operating system.

The Mach operating system was designed with the following three critical
goals in mind:

• Emulate 4.3BSD UNIX so that the executable files from a UNIX system can
run correctly under Mach.
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• Have a modern operating system that supports many memory models, and
parallel and distributed computing.

• Design a kernel that is simpler and easier to modify than is 4.3BSD.

As we have shown in this chapter, Mach is well on its way to achieving these
goals.

Mach 2.5 includes 4.3BSD in its kernel, which provides the emulation
needed but enlarges the kernel. This 4.3BSD code has been rewritten to provide
the same 4.3 functionality, but to use the Mach primitives. This change allows
the 4.3BSD support code to run in user space on a Mach 3.0 system.

Mach uses lightweight processes, in the form of multiple threads of execu-
tion within one task (or address space), to support multiprocessing and parallel
computation. Its extensive use of messages as the only communications method
ensures that protection mechanisms are complete and efficient. By integrating
messages with the virtual-memory system, Mach also ensures that messages
can be handled efficiently. Finally, by having the virtual-memory system use
messages to communicate with the daemons managing the backing store, Mach
provides great flexibility in the design and implementation of these memory-
object-managing tasks.

By providing low-level, or primitive, system calls from which more com-
plex functions may be built, Mach reduces the size of the kernel while per-
mitting operating-system emulation at the user level, much like IBM’s virtual-
machine systems.

Exercises

A.1 What three features of Mach make it appropriate for distributed process-
ing?

A.2 Name two ways that port sets are useful in implementing parallel pro-
grams.

A.3 Consider an application that maintains a database of information, and
provides facilities for other tasks to add, delete, and query the database.
Give three configurations of ports, threads, and message types that could
be used to implement this system. Which is the best? Explain your
answer.

A.4 Give the outline of a task that would migrate subtasks (tasks it creates) to
other systems. Include information about how it would decide when to
migrate tasks, which tasks to migrate, and how the migration would take
place.

A.5 Name two types of applications for which you would use the MIG pack-
age.
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A.6 Why would someone use the low-level system calls, instead of the C
Threads package?

A.7 Why are external memory managers not able to replace the internal page-
replacement algorithms? What information would need to be made
available to the external managers for them to make page-replacement
decisions? Why would providing this information violate the principle
behind the external managers?

A.8 Why is it difficult to implement mutual exclusion and condition variables
in an environment where like-CPUs do not share any memory? What
approach and mechanism could be used to make such features available
on a NORMA system?

A.9 What are the advantages to rewriting the 4.3BSD code as an external, user-
level library, rather than leaving it as part of the Mach kernel? Are there
any disadvantages? Explain your answer.
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Black et al. [1988] discussed the Mach exception-handling facility. A
multithreaded debugger based on this mechanism was described in Caswell
and Black [1989].

A series of talks about Mach sponsored by the OSF UNIX consortium is
available on videotape from OSF. Topics include an overview, threads, net-
working, memory management, many internal details, and some example
implementations of Mach. The slides from these talks were given in [OSF 1989].

On systems where USENET News is available (most educational institutions
in the United States, and some overseas), the news group comp.os.mach is used
to exchange information on the Mach project and its components.

An overview of the microkernel structure of Mach 3.0, complete with
performance analysis of Mach 2.5 and 3.0 compared to other systems, was given
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in Black et al. [1992]. Details of the kernel internals and interfaces of Mach 3.0
were provided in Loepere [1992]. Tanenbaum [1992] presented a comparison of
Mach and Amoeba. Discussions concerning parallelization in Mach and 4.3BSD
are offered by Boykin and Langerman [1990].

Ongoing research was presented at USENIX Mach and Micro-kernel Sym-
posia [USENIX 1990, USENIX 1991, and USENIX 1992b]. Active research areas
include virtual memory, real time, and security [McNamee and Armstrong
1990].


