
High-Level Synchronization

Dining Philosophers

while(TRUE) {
 think();
 eat();
}

Quiz: Write a synchronization
schema for the problem

Dining Philosophers Problem
philosopher(int i) {
 while(TRUE) {
 // Think
 // Eat
 P(fork[i]);
 P(fork[(i+1) mod 5]);
 eat();
 V(fork[(i+1) mod 5]);
 V(fork[i]);
 }
}
semaphore fork[5] = (1,1,1,1,1);
fork(philosopher, 1, 0);
fork(philosopher, 1, 1);
fork(philosopher, 1, 2);
fork(philosopher, 1, 3);
fork(philosopher, 1, 4);

One Answer to the Quiz
philosopher(int i) {
 while(TRUE) {
 // Think
 // Eat
 j = i % 2;
 P(fork[(i+j) mod 5]);
 P(fork[(i+1-j) mod 5]);
 eat();
 V(fork[(i+1-j) mod 5]);
 V(fork[[(i+j) mod 5]);
 }
}
semaphore fork[5] = (1,1,1,1,1);
fork(philosopher, 1, 0);
fork(philosopher, 1, 1);
fork(philosopher, 1, 2);
fork(philosopher, 1, 3);
fork(philosopher, 1, 4);

Abstracting Semaphores

¥ Relatively simple problems, such as the
dining philosophers problem, can be very
difficult to solve

¥ Look for abstractions to simplify solutions
Ð AND synchronization

Ð Events

Ð Monitors

Ð É there are others ...

AND Synchronization
¥ Given two resources, R1 and R2

¥ Some processes access R1, some R2, some
both in the same critical section

¥ Need to avoid deadlock due to ordering of P
operations

¥ Psimultaneous(S1, É, Sn)

AND Synchronization (cont)
semaphore mutex = 1;
semaphore block = 0;

P.sim(int S, int R) {
 P(mutex);
 S--;
 R--;
 if((S < 0) || (R < 0)) {
 V(mutex);
 P(block);
 }
 else
 V(mutex);
}

V.sim(int S, int R) {
 P(mutex);
 S++;
 R++;
 if(((S >= 0) &&
 (R >= 0)) &&
 ((S == 0) ||
 (R == 0)))
 V(block);
 V(mutex);
}

Dining Philosophers Problem
philosopher(int i) {
 while(TRUE) {
 // Think
 // Eat
 Psimultaneous(fork[i], fork [(i+1) mod 5]);
 eat();
 Vsimultaneous(fork[i], fork [(i+1) mod 5]);
 }
}
semaphore fork[5] = (1,1,1,1,1);
fork(philosopher, 1, 0);
fork(philosopher, 1, 1);
fork(philosopher, 1, 2);
fork(philosopher, 1, 3);
fork(philosopher, 1, 4);

Events
¥ May mean different things in each OS

¥ A process can wait on an event until another
process signals the event

¥ Have event descriptor (Òevent control blockÓ)

¥ Active approach
Ð Multiple processes can wait on an event

Ð Exactly one process is unblocked when a signal
occurs

Ð A signal with no waiting process is ignored

¥ May have a queue function that returns
number of processes waiting on the event

Exampleclass Event {
 É
public:
 void signal();
 void wait()
 int queue();
}

shared Event topOfHour;
. . .
while(TRUE)
 if(isTopOfHour())
 while(topOfHour.queue() > 0)
 topOfHour.signal();
}
. . .

shared Event topOfHour;
. . .
// Wait until the top of the hour before proceding
topOfHour.wait();
// ItÕs the top of the hour ...

UNIX Signals
¥ A UNIX signal corresponds to an event

Ð It is raised by one process (or hardware) to call
another processÕs attention to an event

Ð It can be caught (or ignored) by the subject
process

¥ Justification for including signals was for
the OS to inform a user process of an event
Ð User pressed delete key

Ð Program tried to divide by zero

Ð Attempt to write to a nonexistent pipe

Ð etc.

More on Signals
¥ Each version of UNIX has a fixed set of

signals (Linux has 31 of them)
¥ signal.h defines the signals in the OS

¥ App programs can use SIGUSR1 &
SIGUSR2 for arbitrary signalling

¥ Raise a signal with kill(pid, signal)

¥ Process can let default handler catch the
signal, catch the signal with own code, or
cause it to be ignored

More on Signals (cont)

¥ OS signal system call
Ð To ignore: signal(SIG#, SIG_IGN)

Ð To reinstate default: signal(SIG#, SIG_DFL)

Ð To catch: signal(SIG#, myHandler)

¥ Provides a facility for writing your own
event handlers in the style of interrupt
handlers

Signal Handling

/* code for process p
. . .
signal(SIG#, sig_hndlr);
. . .
/* ARBITRARY CODE */

void sig_hndlr(...) {
/* ARBITRARY CODE */
}

Signal Handling

/* code for process p
. . .
signal(SIG#, sig_hndlr);
. . .
/* ARBITRARY CODE */

void sig_hndlr(...) {
/* ARBITRARY CODE */
}

An executing process, q

Raise ÒSIG#Ó for ÒpÓ

sig_hndlr runs in
pÕs address space

q is blocked

q resumes execution

Toy Signal Handler (Fig 9.4)
#include <signal.h>
static void sig_handler(int);
int main () {
 int i, parent_pid, child_pid, status;
 if(signal(SIGUSR1, sig_handler) == SIG_ERR)
 printf(ÒParent: Unable to create handler for SIGUSR1\nÓ);
 if(signal(SIGUSR2, sig_handler) == SIG_ERR)
 printf(ÒParent: Unable to create handler for SIGUSR2\nÓ);
 parent_pid = getpid();
 if((child_pid = fork()) == 0) {
 kill(parent_pid, SIGUSR1);
 for (;;) pause();
 } else {
 kill(child_pid, SIGUSR2);
 printf(ÒParent: Terminating child É \nÓ);
 kill(child_pid), SIGTERM);
 wait(&status);
 printf(Òdone\nÓ);
 }
}

Toy Signal Handler (Fig 9.4)
static void sig_handler(int signo) {
 switch(signo) {
 case SIGUSR1: /* Incoming SIGUSR1 */
 printf(ÒParent: Received SIGUSER1\nÓ);
 break;
 case SIGUSR2: /* Incoming SIGUSR2 */
 printf(ÒChild: Received SIGUSER2\nÓ);
 break;
 default: break;
 }
 return
}

NT Events

Kernel object

Signaled/not signaled flag

Thread

WaitForSingleObject(foo, time);

Signaled
¥Implicitly
¥Manually
¥Callbacks

Waitable timer

NT Events
Thread

WaitForSingleObject(foo, time);

Thread

Thread

WaitForSingleObject(foo, time);

WaitForSingleObject(foo, time);

NT Events
Thread

WaitForMultipleObjects(foo, time);

Monitors
¥ Specialized form of ADT

Ð Encapsulates implementation

Ð Public interface (types & functions)

¥ Only one process can be executing in the
ADT at a time monitor anADT {

 semaphore mutex = 1; // Implicit
 . . .
public:
 proc_i(É) {
 P(mutex); // Implicit
 <processing for proc_i>;
 V(mutex); // Implicit
 };
 . . .
};

Example: Shared Balance

monitor sharedBalance {
 double balance;
public:
 credit(double amount) {balance += amount;};
 debit(double amount) {balance -= amount;};
 . . .
};

Example: Readers & Writers
monitor readerWriter_1 {
 int numberOfReaders = 0;
 int numberOfWriters = 0;
 boolean busy = FALSE;
public:
 startRead() {
 };
 finishRead() {
 };
 startWrite() {
 };
 finishWrite() {
 };
};

reader(){
 while(TRUE) {
 . . .
 startRead();
 finishRead();
 . . .
}
fork(reader, 0);
. . .
fork(reader, 0):
fork(writer, 0);
. . .
fork(writer, 0);

writer(){
 while(TRUE) {
 . . .
 startWriter();
 finishWriter();
 . . .
}

Example: Readers & Writers

monitor readerWriter_1 {
 int numberOfReaders = 0;
 int numberOfWriters = 0;
 boolean busy = FALSE;
public:
 startRead() {
 while(numberOfWriters != 0) ;
 numberOfReaders++;
 };
 finishRead() {
 numberOfReaders-;
 };

 startWrite() {
 numberOfWriters++;
 while(
 busy ||
 (numberOfReaders > 0)
) ;
 busy = TRUE;
 };
 finishWrite() {
 numberOfWriters--;
 busy = FALSE;
 };
};

Example: Readers & Writers

monitor readerWriter_1 {
 int numberOfReaders = 0;
 int numberOfWriters = 0;
 boolean busy = FALSE;
public:
 startRead() {
 while(numberOfWriters != 0) ;
 numberOfReaders++;
 };
 finishRead() {
 numberOfReaders--;
 };

 startWrite() {
 numberOfWriters++;
 while(
 busy ||
 (numberOfReaders > 0)
) ;
 busy = TRUE;
 };
 finishWrite() {
 numberOfWriters--;
 busy = FALSE;
 };
};

¥Deadlock can happen

Sometimes Need to Suspend

¥ Process obtains monitor, but detects a
condition for which it needs to wait

¥ Want special mechanism to suspend until
condition is met, then resume
Ð Process that makes condition true must exit

monitor

Ð Suspended process then resumes

¥ Condition Variable

Condition Variables
¥ Essentially an event (as defined previously)

¥ Occurs only inside a monitor

¥ Operations to manipulate condition variable
Ð wait: Suspend invoking process until another

executes a signal
Ð signal: Resume one process if any are

suspended, otherwise do nothing
Ð queue: Return TRUE if there is at least one

process suspended on the condition variable

Active vs Passive signal

¥ Hoare semantics: same as active semaphore
Ð p0 executes signal while p1 is waiting ⇒ p0

yields the monitor to p1

Ð The signal is only TRUE the instant it happens

¥ Brinch Hansen (ÒMesaÓ) semantics: same as
passive semaphore
Ð p0 executes signal while p1 is waiting ⇒ p0

continues to execute, then when p0 exits the
monitor p1 can receive the signal

Ð Used in the Xerox Mesa implementation

Hoare vs Mesa Semantics
¥ Hoare semantics:

¥ Mesa semantics:

. . .
if(resourceNotAvailable()) resourceCondition.wait();
/* now available É continue É */
. . .

. . .
while(resourceNotAvailable()) resourceCondition.wait();
/* now available É continue É */
. . .

2nd Try at Readers & Writers
monitor readerWriter_2 {
 int numberOfReaders = 0;
 boolean busy = FALSE;
 condition okToRead, okToWrite;
public:
 startRead() {
 if(busy || (okToWrite.queue())
 okToRead.wait();
 numberOfReaders++;
 okToRead.signal();
 };
 finishRead() {
 numberOfReaders--;
 if(numberOfReaders == 0)
 okToWrite.signal();
 };

 startWrite() {
 if((numberOfReaders != 0)
 || busy)
 okToWrite.wait();
 busy = TRUE;
 };
 finishWrite() {
 busy = FALSE;
 if(okToRead.queue())
 okToRead.signal()
 else
 okToWrite.signal()
 };
};

Example: Synchronizing Traffic
¥ One-way tunnel

¥ Can only use
tunnel if no
oncoming traffic

¥ OK to use
tunnel if traffic
is already
flowing the right
way

Example: Synchronizing Traffic
monitor tunnel {
 int northbound = 0, southbound = 0;
 trafficSignal nbSignal = RED, sbSignal = GREEN;
 condition busy;
public:
 nbArrival() {
 if(southbound > 0) busy.wait();
 northbound++;
 nbSignal = GREEN; sbSignal = RED;
 };
 sbArrival() {
 if(northbound > 0) busy.wait();
 southbound++;
 nbSignal = RED; sbSignal = GREEN;
 };
 depart(Direction exit) (
 if(exit = NORTH {
 northbound--;
 if(northbound == 0) while(busy.queue()) busy.signal();
 else if(exit == SOUTH) {
 southbound--;
 if(southbound == 0) while(busy.queue()) busy.signal();
 }
 }
}

Dining Philosophers É again ...
#define N ___
enum status(EATING, HUNGRY, THINKING};
monitor diningPhilosophers {
 status state[N];
 condition self[N];
 test(int i) {
 if((state[(i-1) mod N] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i+1) mod N] != EATING)) {
 state[i] = EATING;
 self[i].signal();
 }
 };
public:
 diningPhilosophers() { // Initilization
 for(int i = 0; i < N; i++) state[i] = THINKING;
 };

Dining Philosophers É again ...
test(int i) {
 if((state[(i-1) mod N] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i+1) mod N] != EATING)) {
 state[i] = EATING;
 self[i].signal();
 };
 };
public:
 diningPhilosophers() {...};
 pickUpForks(int i) {
 state[i] = HUNGRY;
 test(i);
 if(state[i] != EATING) self[i].wait();
 };
 putDownForks(int i) {
 state[i] = THINKING;
 test((i-1) mod N);
 test((i+1) mod N);
 };
}

Experience with Monitors
¥ Danger of deadlock with nested calls

¥ Monitors were implemented in Mesa
Ð Used Brinch Hansen semantics

Ð Nested monitor calls are, in fact, a problem

Ð Difficult to get the right behavior with these
semantics

Ð Needed timeouts, aborts, etc.

¥ See paper by Lampson & Redell

Interprocess Communication (IPC)
¥ Signals, semaphores, etc. do not pass

information from one process to another

¥ Monitors support information sharing, but
only through shared memory in the monitor

¥ There may be no shared memory
Ð OS does not support it

Ð Processes are on different machines on a
network

¥ Can use messages to pass info while
synchronizing

IPC Mechanisms

Info to be
shared

Message
Info copy

 OS IPC
Mechanism

¥ Must bypass memory protection mechanism
for local copies

¥ Must be able to use a network for remote
copies

Address Space for p0 Address Space for p1

Refined IPC Mechanism
¥ Spontaneous changes to p1Õs address space

¥ Avoid through the use of mailboxes

Info to be
shared

Info copy

Address Space for p0 Address Space for p1

MessageMessageMessage

Mailbox for p1

send function receive function

OS Interface

send(É p1, É); receive(É);

Refined IPC Mechanism
¥ OS manages the mailbox space

¥ More secure message system

Info to be
shared

Info copy

Address Space for p0 Address Space for p1

MessageMessageMessage

Mailbox for p1

send function receive function

OS Interface
send(É p1, É); receive(É);

Message Protocols
¥ Sender transmits a set of bits to receiver

Ð How does the sender know when the receiver is
ready (or when the receiver obtained the info)?

Ð How does the receiver know how to interpret
the info?

Ð Need a protocol for communication
¥ Standard ÒenvelopeÓ for containing the info

¥ Standard header

¥ A message system specifies the protocols

Transmit Operations
¥ Asynchronous send:

Ð Delivers message to receiverÕs mailbox

Ð Continues execution

Ð No feedback on when (or if) info was delivered

¥ Synchronous send:
Ð Goal is to block sender until message is

received by a process
¥ Variant sometimes used in networks: Until the

message is in the mailbox

Receive Operation
¥ Blocking receive:

Ð Return the first message in the mailbox

Ð If there is no message in mailbox, block the
receiver until one arrives

¥ Nonblocking receive:
Ð Return the first message in the mailbox

Ð If there is no message in mailbox, return with
an indication to that effect

Synchronized IPC

/* signal p2 */
syncSend(message1, p2);
<waiting É>;
/* wait for signal from p2 */
blockReceive(msgBuff, &from);

Code for p1 Code for p2

/* wait for signal from p1 */
blockReceive(msgBuff, &from);
<process message>;
/* signal p1 */
syncSend(message2, p1);

syncSend(É)

syncSend(É)

blockReceive(É)

blockReceive(É)

Asynchronous IPC

/* signal p2 */
asyncSend(message1, p2);
<other processing>;
/* wait for signal from p2 */
while(!nbReceive(&msg, &from));

Code for p1 Code for p2

/* test for signal from p1 */
if(nbReceive(&msg, &from)) {
 <process message>;
 asyncSend(message2, p1);
}else<
 <other processing>;
}

asyncSend(É)

asyncSend(É)

nonblockReceive(É)

nonblockReceive(É)

nonblockReceive(É)

nonblockReceive(É)

UNIX Pipes

Info to be
shared

Info copy

Address Space for p1

pipe for p1 and p2

write function read function

System Call Interface
write(pipe[1], É); read(pipe[0]);

UNIX Pipes (cont)
¥ The pipe interface is intended to look like a

file interface
Ð Analog of open is to create the pipe
Ð File read/write system calls are used to

send/receive information on the pipe

¥ What is going on here?
Ð Kernel creates a buffer when pipe is created

Ð Processes can read/write into/out of their
address spaces from/to the buffer

Ð Processes just need a handle to the buffer

UNIX Pipes (cont)
¥ File handles are copied on fork

¥ É so are pipe handles
int pipeID[2];
. . .
pipe(pipeID);
. . .
if(fork() == 0) { /* the child */
 . . .
 read(pipeID[0], childBuf, len);
 <process the message>;
 . . .
} else { /* the parent */
 . . .
 write(pipeID[1], msgToChild, len);
 . . .
}

UNIX Pipes (con)
¥ The normal write is an asynchronous op

(that notifies of write errors)
¥ The normal read is a blocking read

¥ The read operation can be nonblocking
#include <sys/ioctl.h>
. . .
int pipeID[2];
. . .
pipe(pipeID);
ioctl(pipeID[0], FIONBIO, &on);
. . .
read(pipeID[0], buffer, len);
if(errno != EWOULDBLOCK) {
 /* no data */
} else { /* have data */

Explicit Event Ordering
¥ Alternative technique of growing

importance in network systems

¥ Rely on knowing the relative order of
occurrence of every event
Ð (occurrence of y in pj) < (occurrence of x in pi)

Ð Then can synchronize by explicitly specifying
each relation (when it is important)
advance(eventCount): Announces the occurrence of
an event related to eventCount, causing it to be
incremented by 1
await(eventCount, v): Causes process to block as
long as eventCount < v.

Bounded Buffer
producer() {
 int i = 1;
 while(TRUE) {
 await(out, i-N);
 produce(buffer[(i-1)mod N]);
 advance(in);
 i++;
 }
}

eventcount in = 0; out = 0;
fork(producer, 0);
fork(consumer, 0);

consumer() {
 int i = 1;
 while(TRUE) {
 await(in, i);
 consume(buffer[(i-1)mod N]);
 advance(out);
 i++;
 }
}

More on EventCounts
¥ Notice that advance and await need not be

uninterruptible

¥ There is no requirement for shared memory

¥ For full use of this mechanism, actually
need to extend it a bit with a sequencer

¥ Underlying theory is also used to implement
Òvirtual global clocksÓ in a network

¥ Emerging as a preferred synchronization
mechanism on networks

