
Device Management

Device Management Organization

Application
Process

File
Manager

Device
Driver

Device Controller

Command Status Data

Hardware Interface

API

Read with Polling
read(device, É);

Data

Device Controller

Command Status Data

read function

write function

1

2 3 4

5

Hardware Interface

System Interface

Read Using Interrupts
read(device, É);

Data

Device Controller

Command Status Data

read driver

write driver

1

2

3

4

5Hardware Interface

System Interface
Device Status Table

Device
Handler

Interrupt
Handler

6

7

8a

8b

9

CPU-I/O Overlap

Variable x Register

Data on device

. . .
read(dev_I, Ò%dÓ, x);
y = f(x)
. . .

Device dev_I
Memory CPU

. . .
startRead(dev_I, Ò%dÓ, x);
. . .
While(stillReading()) ;
y = f(x)
. . .

I/O - CPU Overlap
App 1

App 2

I/O Ctlr

t1 t2 t3 t4

App

I/O Ctlr

t1 t2 t3 t4 t5 t6 t7 t8 t9

Overlapping App 1Õs I/O with App 2

Overlapping App CPU with its own I/O

Memory Mapped I/O

Primary
Memory

Device 0

Device 1

Device n-1

Primary
Memory

Device 0

Device 1

Device n-1

D
ev

ic
e

A
dd

re
ss

es
M

em
or

y
A

dd
re

ss
es

M
em

or
y

A
dd

re
ss

es

Direct Memory Access

Primary
Memory

CPU

Controller

Device

Primary
Memory

CPU

Controller

Device

Hardware Buffering

Process

Controller

Data

Device

Process

Controller

B

Device

A

Unbuffered Process reads bi-1

Controller reads bi

Hardware Buffering

Process

Controller

Data

Device

Process

Controller

B

Device

A

Process

Controller

B

Device

A

Unbuffered Process reads bi-1

Controller reads bi

Process reads bi

Controller reads bi+1

Buffering in the Driver
Process

Controller

B

Device

A

BA

H
ar

dw
ar

e
D

ri
ve

r

Buffering in the Driver
Process

Controller

B

Device

A

Process

Controller

B

Device

A

BA BA

H
ar

dw
ar

e
D

ri
ve

r

A Ring Buffer

From data producer

To data consumer

B
uf

fe
r

i

B
uf

fe
r

j

Compute vs I/O Bound

Compute-bound

I/O-bound

Time

Application Programming
Interface

¥ Functions available to application programs

¥ Abstract all devices to a few interfaces

¥ Make interfaces as similar as possible
Ð Block vs character

Ð Sequential vs direct access

¥ Device driver implements functions (one
entry point per API function)

BSD UNIX Driver

open Prepare dev for operation
close No longer using the device
ioctl Character dev specific info
read Character dev input op
write Character dev output op
strategy Block dev input/output ops
select Character dev check for data
stop Discontinue a stream output op

Driver-Kernel Interface
¥ Drivers separate from rest of kernel

¥ Kernel makes calls on specific functions,
drivers implement them

¥ Drivers use other kernel functions for:
Ð Device allocation

Ð Resource (e.g., memory) allocation

Ð Scheduling

Ð etc. (varies from OS to OS)

Reconfigurable Drivers

Other
kernel services

Entry Points for Device j

open(){É}

read(){É}

etc.

System call interface

Driver for Device j

NT Driver Organization

I/O Portion of Native API
I/

O
 M

a
n

a
g

e
r

Device Driver

N
T

 E
x

e
c
u

ti
v

e
HAL

Intermediate Driver

File System Driver

Filter Driver

Filter Driver

Data Flow

Device

NT Device Drivers
¥ API model is the same as a file

¥ Extend device management by adding
modules to the stream

¥ Device driver is invoked via an Interrupt
Request Packet (IRP)
Ð IRP can come from another stream module

Ð IRP can come from the OS

Ð Driver must respond to minimum set of IRPs

¥ See Part I of notes

Serial Communication Device

Modem

RS-232
¥9-pin connector
¥4-wires
¥bit serial
¥etc.

Controller

UART
¥parity
¥bits per byte
¥etc.

Driver
¥Set UART parms
¥read/write ops
¥Interrupt hander

Rotating Storage

Track (Cylinder)

Se
ct

or

Top View of a Surface

MS Disk Geometry
0x00 0x02 <a jump instruction to 0x1e>
0x03 0x0a Computer manufacturer name
0x0b 0x0c Sectors per cluster (discussed in Exercise 11)
0x0d 0x0f Reserved sectors for the boot record
0x10 0x10 Number of FATs
0x11 0x12 Number of root directory entries
0x13 0x14 Number of logical sectors
0x15 0x15 Medium descriptor byte (used only on old versions of MS-DOS)
0x16 0x17 Sectors per FAT
0x18 0x19 Sectors per track
0x1a 0x1b Number of surfaces (heads)
0x1c 0x1d Number of hidden sectors
0x1e É Bootstrap program

Disk Optimizations

¥ Transfer Time: Time to copy bits from disk
surface to memory

¥ Disk latency time: Rotational delay waiting
for proper sector to rotate under R/W head

¥ Disk seek time: Delay while R/W head
moves to the destination track/cylinder

¥ Access Time = seek + latency + transfer

Optimizing Seek Time

¥ Multiprogramming on I/O-bound programs
=> set of processes waiting for disk

¥ Seek time dominates access time =>
minimize seek time across the set

¥ Tracks 0:99; Head at track 75, requests for
23, 87, 36, 93, 66

¥ FCFS: 52+ 64 + 51 + 57 + 27 = 251 steps

Optimizing Seek Time (cont)

¥ Requests = 23, 87, 36, 93, 66

¥ SSTF: (75), 66, 87, 93, 36, 23
Ð 11 + 21 + 6 + 57 + 13 = 107 steps

¥ Scan: (75), 87, 93, 99, 66, 36, 23
Ð 12 + 6 + 6 + 33 + 30 + 13 = 100 steps

¥ Look: (75), 87, 93, 66, 36, 23
Ð 12 + 6 + 27 + 30 + 13 = 87 steps

Optimizing Seek Time (cont)

¥ Requests = 23, 87, 36, 93, 66

¥ Circular Scan: (75), 87, 93, 99, 23, 36, 66
Ð 12 + 6 + 6 + home + 23 + 13 + 30 = 90 + home

¥ Circular Look: (75), 87, 93, 23, 36, 66
Ð 12 + 6 + home + 23 + 13 + 30 = 84 + home

