
File Management

File Management
¥ File is a named collection of information

¥ The file manager administers the collection
by:
Ð Storing the information a device

Ð Mapping the block storage to the logical view

Ð Allocating/deallocating storage

Ð Providing file directories

¥ What abstraction is presented to
programmer?

Information Structure

Records

Applications

Structured Record Files

Record-Stream Translation

Stream-Block Translation

Byte Stream Files

Storage device

Low Level Files

Stream-Block Translation

b0 b1 b2 bi
......

File Descriptors
¥External name
¥Current state
¥Sharable
¥Owner
¥User
¥Locks
¥Protection settings
¥Length
¥Time of creation
¥Time of last modification
¥Time of last access
¥Reference count
¥Storage device details

Byte Stream File Interface

fileID = open(fileName)
close(fileID)
read(fileID, buffer, length)
write(fileID, buffer, length)
seek(fileID, filePosition)

Structured Files

Records

Record-Block Translation

Record-Oriented Sequential Files

Logical Record

fileID = open(fileName)
close(fileID)
getRecord(fileID, record)
putRecord(fileID, record)
seek(fileID, position)

Record-Oriented Sequential Files

...
H byte header k byte logical record

Logical Record

Record-Oriented Sequential Files

...
H byte header k byte logical record

...

FragmentPhysical Storage Blocks

Logical Record

Indexed Sequential File

¥ Suppose we want to directly access records

¥ Add an index to the file

fileID = open(fileName)
close(fileID)
getRecord(fileID, index)
index = putRecord(fileID, record)
deleteRecord(fileID, index)

Indexed Sequential File (cont)

Account #
012345
123456
294376
...
529366
...
965987

Index

i
k

j

index = i

index = k

index = j

More Abstract Files
¥ Inverted files

Ð Index for each datum in the file

¥ Databases
Ð More elaborate indexing mechanism

Ð DDL & DML

¥ Multimedia storage
Ð Records contain radically different types

Ð Access methods must be general

Implementing Low Level Files
¥ Secondary storage device contains:

Ð Volume directory (sometimes a root directory
for a file system)

Ð External file descriptor for each file

Ð The file contents

¥ Manages blocks
Ð Assigns blocks to files (descriptor keeps track)

Ð Keeps track of available blocks

¥ Maps to/from byte stream

An open Operation
¥ Locate the external file descriptor

¥ Extract info needed to read/write file

¥ Authenticate that process can access the file

¥ Create an internal file descriptor in primary
memory

¥ Create an entry in a Òper processÓ open file
status table

¥ Allocate resources, e.g., buffers, to support
file usage

Opening a UNIX File

fid = open(ÒfileAÓ, flags);
É
read(fid, buffer, len);

0 stdin
1 stdout
2 stderr
3 ...

Descriptor Table

File structure

inode

Block Management

¥ The job of assigning storage blocks to the
file

¥ Fixed sized, k, blocks
¥ File of length m requires N = m/k blocks

¥ Byte bi is stored in block i/k
¥ Three basic strategies:

Ð Contiguous allocation

Ð Linked lists

Ð Indexed allocation

Contiguous Allocation

¥ Maps the N blocks into N contiguous blocks
on the secondary storage device

¥ Difficult to support dynamic file sizes

Head position 237
É
First block 785
Number of blocks 25

File descriptor

Linked Lists
¥ Each block contains a header with

Ð Number of bytes in the block

Ð Pointer to next block

¥ Blocks need not be contiguous

¥ Files can expand and contract

¥ Seeks can be slow
First block
É

Head: 417
...

Length

Byte 0

Byte 4095
...

Length

Byte 0

Byte 4095
...

Length

Byte 0

Byte 4095
...

Block 0 Block 1 Block N-1

Indexed Allocation
¥ Extract headers and put them in an index

¥ Simplify seeks

¥ May link indices together (for large files)

Index block
É

Head: 417
...

Byte 0

Byte 4095
...

Byte 0

Byte 4095
...

Byte 0

Byte 4095
...

Block 0

Block 1

Block N-1

Length

Length

Length

UNIX Files
Datamode

owner
É
Direct block 0
Direct block 1
É
Direct block 11
Single indirect
Double indirect
Triple indirect

inode

Data

Data

Index

Data

DataIndex

Index

Index

Index

Index

Index
Index

Index

Data

Data

Data

Data

Unallocated Blocks
¥ How should unallocated blocks be managed?

¥ Need a data structure to keep track of them
Ð Linked list

¥ Very large

¥ Hard to manage spatial locality

Ð Block status map (Òdisk mapÓ)
¥ Bit per block

¥ Easy to identify nearby free blocks

¥ Useful for disk recovery

Managing the Byte Stream
¥ Packing and unpacking blocks

Ð Must read-ahead on input

Ð Must write-behind on output

Ð Seek

Ð Inserting/deleting bytes in the interior of the
stream

¥ Block I/O
Ð Buffer several blocks

Ð Memory mapped files

Directories
¥ A set of logically associated files and sub

directories

¥ File manager provides set of controls:
Ð enumerate

Ð copy

Ð rename

Ð delete

Ð traverse

Ð etc.

Directory Structures
¥ How should files be organized within

directory?
Ð Flat name space

¥ All files appear in a single directory

Ð Hierarchical name space
¥ Directory contains files and subdirectories

¥ Each file/directory appears as an entry in exactly
one other directory -- a tree

¥ Popular variant: All directories form a tree, but a
file can have multiple parents.

Directory Implementation
¥ Device Directory

Ð A device can contain a collection of files

Ð Easier to manage if there is a root for every file
on the device -- the device root directory

¥ File Directory
Ð Typical implementations have directories

implemented as a file with a special format

Ð Entries in a file directory are handles for other
files (which can be files or subdirectories)

UNIX mount Command

/

bin usr etc foo

bill nutt

abc

bar

blah

cde xyz

UNIX mount Command

/

bin usr etc foo

bill nutt

abc

bar

blah

cde xyz

/

bin usr etc foo

bill nutt

abc

bar

blah

cde xyz

mount bar at foo

