
Virtual Memory

Names, Virtual Addresses &
Physical Addresses

Source
Program

Absolute
Module

Name Space
Virtual

Address Space

Compile/Link tools

Names, Virtual Addresses &
Physical Addresses

Source
Program

Absolute
Module

Executable
Image

Name Space

Physical
Address Space

Virtual
Address Space

Ψt: Virtual Address Space → Physical Address Space

Virtual Memory

¥ Uses dynamic address relocation/binding
Ð Generalization of base-limit registers

Ð Physical address corresponding to a compile-
time address is not known until run time

¥ Idea is that only part of the address space is
loaded as process executes

¥ This works because of program and data
locality

Virtual Memory (cont)

¥ Use a dynamic virtual address map, Ψt

Virtual
Address
Space

Physical
Address
Space

Ψt

Address Formation

¥ Translation system produces an address
space, but address are virtual instead of
physical

¥ A virtual address, x:
Ð Is mapped to y = Ψt(x) if x is loaded at physical

address y
Ð Is mapped to Ω if x is not loaded

¥ The map changes as the program executes
¥ Ψt: Virtual Address → Physical Address ∪ {Ω}

Size of Blocks of Memory

¥ Fixed size: Pages are moved back and forth
between primary and secondary memory

¥ Variable size: Programmer-defined
segments are the unit of movement

¥ Paging is the commercially dominant form
of virtual memory today

Paging

¥ A page is a fixed sized block of virtual
addresses

¥ A page frame is a fixed size block of
physical memory, the same size as a page

¥ When a virtual address in page i is
referenced by the CPU
Ð If page i is loaded at page frame j, the virtual

address is relocated to page frame j

Ð If page is not loaded, the OS interrupts the
process and loads the page into a page frame

Addresses
¥ Suppose there are G=2g+h virtual addresses

and H=2j+h physical addresses
Ð Each page/page frame is 2h addresses

Ð There are 2g pages in the virtual address space

Ð 2j page frames are allocated to the process
Ð Rather than map individual addresses, Ψt maps

the 2g pages to the 2j page frames

Address Translation
¥ Let N = {d0, d1, É dn-1} be the pages

¥ Let M = {b0, b1, É, bm-1} be page frames
¥ Virtual address, i, satisfies 0≤i<G= 2g+h

¥ Physical address, k = U2h+V (0≤V<G= 2h)
Ð U is page frame number

Ð V is the line number within the page
Ð Ψt:[0:G-1] → <U, V> ∪ {Ω}

Ð Since every page is size c=2h

¥ page number = U = i/c
¥ line number = V = i mod c

Address Translation (cont)

Page # Line #Virtual Address

g bits h bits

ΨtMissing Page

Frame # Line #
j bits h bits

Physical Address

MAR

CPU Memory

Demand Paging
¥ Page fault occurs

¥ Process with missing page is interrupted

¥ Memory manager locates the missing page

¥ Page frame is unloaded (replacement
policy)

¥ Page is loaded in the vacated page frame

¥ Page table is updated

¥ Process is restarted

Modeling Page Behavior
¥ Let ω = r1, r2, r3, É, ri, É be a page

reference stream
Ð ri is the ith page # referenced by the process

Ð The subscript is the virtual time for the process

¥ Given a page frame allocation of m, the
memory state at time t, St(m), is set of
pages loaded
Ð St(m) = St-1(m) ∪ Xt - Yt

¥ Xt is the set of fetched pages at time t

¥ Yt is the set of replaced pages at time t

More on Demand Paging
¥ If rt was loaded at time t-1, St(m) = St-1(m)

¥ If rt was not loaded at time t-1 and there
were empty page frames
Ð St(m) = St-1(m) ∪ {rt}

¥ If rt was not loaded at time t-1 and there
were no empty page frames
Ð St(m) = St-1(m) ∪ {rt} - {y}

¥ The alternative is prefetch paging

Static Allocation, Demand Paging

¥ Number of page frames is static over the
life of the process

¥ Fetch policy is demand
¥ Since St(m) = St-1(m) ∪ {rt} - {y}, the

replacement policy must choose y -- which
uniquely identifies the paging policy

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0
1
2

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2
1 0 0
2 3

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2
1 0 0 1
2 3 3

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2
1 0 0 1 1 1
2 3 3 3 0

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3
1 0 0 1 1 1 1
2 3 3 3 0 0

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3 3 3
1 0 0 1 1 1 1 1 1
2 3 3 3 0 0 0 2

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3 3 3 0
1 0 0 1 1 1 1 1 1 1
2 3 3 3 0 0 0 2 1

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3 3 3 0 0
1 0 0 1 1 1 1 1 1 1 3
2 3 3 3 0 0 0 2 1 1

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3 3 3 0 0 0 0
1 0 0 1 1 1 1 1 1 1 3 3 6
2 3 3 3 0 0 0 2 1 1 1 1

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3 3 3 0 0 0 0 4
1 0 0 1 1 1 1 1 1 1 3 3 6 6
2 3 3 3 0 0 0 2 1 1 1 1 1

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3 3 3 0 0 0 0 4 4
1 0 0 1 1 1 1 1 1 1 3 3 6 6 5
2 3 3 3 0 0 0 2 1 1 1 1 1 1

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3 3 3 0 0 0 0 4 4 7
1 0 0 1 1 1 1 1 1 1 3 3 6 6 5 5
2 3 3 3 0 0 0 2 1 1 1 1 1 1 1

Random Replacement
¥ Replaced page, y, is chosen from the m

loaded page frames with probability 1/m

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 3 3 3 0 0 0 0 4 4 7
1 0 0 1 1 1 1 1 1 1 3 3 6 6 5 5
2 3 3 3 0 0 0 2 1 1 1 1 1 1 1

¥ No knowledge of ϖ ⇒ not perform well

¥ Easy to implement

13 page faults

BeladyÕs Optimal Algorithm
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)FWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2
1 0 0
2 3

BeladyÕs Optimal Algorithm
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)FWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2
1 0 0
2 3

FWD4(2) = 1
FWD4(0) = 2
FWD4(3) = 3

BeladyÕs Optimal Algorithm
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)FWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2
1 0 0 0
2 3 1

FWD4(2) = 1
FWD4(0) = 2
FWD4(3) = 3

BeladyÕs Optimal Algorithm
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)FWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2
1 0 0 0 0 0
2 3 1 1 1

BeladyÕs Optimal Algorithm
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)FWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 2
1 0 0 0 0 0 3
2 3 1 1 1 1

FWD7(2) = 2
FWD7(0) = 3
FWD7(1) = 1

BeladyÕs Optimal Algorithm
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)FWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 2 2 2 0
1 0 0 0 0 0 3 3 3 3
2 3 1 1 1 1 1 1 1

FWD10(2) = ∞
FWD10(3) = 2
FWD10(1) = 3

BeladyÕs Optimal Algorithm
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)FWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 2 2 2 0 0 0
1 0 0 0 0 0 3 3 3 3 3 3
2 3 1 1 1 1 1 1 1 1 1

FWD13(0) = ∞
FWD13(3) = ∞
FWD13(1) = ∞

BeladyÕs Optimal Algorithm
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)FWDt(x)

Let page reference stream, ϖ = 2031203120316457

¥ Perfect knowledge of ϖ ⇒ perfect performance

¥ Impossible to implement

10 page faults

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 2 2 2 0 0 0 0 4 4 4
1 0 0 0 0 0 3 3 3 3 3 3 6 6 6 7
2 3 1 1 1 1 1 1 1 1 1 1 1 5 5

Least Recently Used (LRU)
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)BKWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2
1 0 0
2 3

BKWD4(2) = 3
BKWD4(0) = 2
BKWD4(3) = 1

Least Recently Used (LRU)
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)BKWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 1
1 0 0 0
2 3 3

BKWD4(2) = 3
BKWD4(0) = 2
BKWD4(3) = 1

Least Recently Used (LRU)
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)BKWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 1 1
1 0 0 0 2
2 3 3 3

BKWD5(1) = 1
BKWD5(0) = 3
BKWD5(3) = 2

Least Recently Used (LRU)
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)BKWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 1 1 1
1 0 0 0 2 2
2 3 3 3 0

BKWD6(1) = 2
BKWD6(2) = 1
BKWD6(3) = 3

Least Recently Used (LRU)
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)BKWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 1 1 1 3 3 3 0 0 0 6 6 6 7
1 0 0 0 2 2 2 1 1 1 3 3 3 4 4 4
2 3 3 3 0 0 0 2 2 2 1 1 1 5 5

Least Recently Used (LRU)
¥ Replace page with maximal forward

distance: yt = max xeS t-1(m)BKWDt(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2 2 3 2 2 2 2 6 6 6 6
1 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4
2 3 3 3 3 3 3 3 3 3 3 3 3 5 5
3 1 1 1 1 1 1 1 1 1 1 1 1 7

¥ Backward distance is a good predictor of
forward distance -- locality

Least Frequently Used (LFU)
¥ Replace page with minimum use:

yt = min xeS t-1(m)FREQ(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2
1 0 0
2 3

FREQ4(2) = 1
FREQ4(0) = 1
FREQ4(3) = 1

Least Frequently Used (LFU)
¥ Replace page with minimum use:

yt = min xeS t-1(m)FREQ(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2
1 0 0 1
2 3 3

FREQ4(2) = 1
FREQ4(0) = 1
FREQ4(3) = 1

Least Frequently Used (LFU)
¥ Replace page with minimum use:

yt = min xeS t-1(m)FREQ(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2
1 0 0 1 1 1
2 3 3 3 0

FREQ6(2) = 2
FREQ6(1) = 1
FREQ6(3) = 1

Least Frequently Used (LFU)
¥ Replace page with minimum use:

yt = min xeS t-1(m)FREQ(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 2 2 2
1 0 0 1 1 1
2 3 3 3 0

FREQ7(2) = ?
FREQ7(1) = ?
FREQ7(0) = ?

First In First Out (FIFO)
¥ Replace page that has been in memory the

longest: yt = max xeS t-1(m)AGE(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 1
1 0 0 0
2 3 3

First In First Out (FIFO)
¥ Replace page that has been in memory the

longest: yt = max xeS t-1(m)AGE(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2
1 0 0
2 3

AGE4(2) = 3
AGE4(0) = 2
AGE4(3) = 1

First In First Out (FIFO)
¥ Replace page that has been in memory the

longest: yt = max xeS t-1(m)AGE(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 1
1 0 0 0
2 3 3

AGE4(2) = 3
AGE4(0) = 2
AGE4(3) = 1

First In First Out (FIFO)
¥ Replace page that has been in memory the

longest: yt = max xeS t-1(m)AGE(x)

Let page reference stream, ϖ = 2031203120316457

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7
0 2 2 2 1
1 0 0 0
2 3 3

AGE5(1) = ?
AGE5(0) = ?
AGE5(3) = ?

BeladyÕs Anomaly

¥ FIFO with m = 3 has 9 faults

¥ FIFO with m = 4 has 10 faults

Let page reference stream, ϖ = 012301401234

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 3 3 3 4 4 4 4 4 4
1 1 1 1 0 0 0 0 0 2 2 2
2 2 2 2 1 1 1 1 1 3 3

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 0 0 0 4 4 4 4 3 3
1 1 1 1 1 1 1 0 0 0 0 4
2 2 2 2 2 2 2 1 1 1 1
3 3 3 3 3 3 3 2 2 2

Stack Algorithms
¥ Some algorithms are well-behaved

¥ Inclusion Property: Pages loaded at time t
with m is also loaded at time t with m+1

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 3
1 1 1 1
2 2 2

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 0
1 1 1 1
2 2 2
3 3

LRU

Stack Algorithms
¥ Some algorithms are well-behaved

¥ Inclusion Property: Pages loaded at time t
with m is also loaded at time t with m+1

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 3 3
1 1 1 1 1
2 2 2 0

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 0 0
1 1 1 1 1
2 2 2 2
3 3 3

LRU

Stack Algorithms
¥ Some algorithms are well-behaved

¥ Inclusion Property: Pages loaded at time t
with m is also loaded at time t with m+1

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 3 3 3
1 1 1 1 0 0
2 2 2 2 1

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2
3 3 3 3

LRU

Stack Algorithms
¥ Some algorithms are well-behaved

¥ Inclusion Property: Pages loaded at time t
with m is also loaded at time t with m+1

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 3 3 3 4
1 1 1 1 0 0 0
2 2 2 2 1 1

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 2 2 2 4
3 3 3 3 3

LRU

Stack Algorithms
¥ Some algorithms are well-behaved

¥ Inclusion Property: Pages loaded at time t
with m is also loaded at time t with m+1

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 3 3 3 4 4 4 2 2 2
1 1 1 1 0 0 0 0 0 0 3 3
2 2 2 2 1 1 1 1 1 1 4

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 0 0 0 0 0 0 0 0 4
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 4 4 4 4 3 3
3 3 3 3 3 3 3 2 2 2

LRU

Stack Algorithms
¥ Some algorithms are well-behaved

¥ Inclusion Property: Pages loaded at time t
with m is also loaded at time t with m+1

FIFO
Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 3 3 3 4 4 4 4 4 4
1 1 1 1 0 0 0 0 0 2 2 2
2 2 2 2 1 1 1 1 1 3 3

Frame 0 1 2 3 0 1 4 0 1 2 3 4
0 0 0 0 0 0 0 4 4 4 4 3 3
1 1 1 1 1 1 1 0 0 0 0 4
2 2 2 2 2 2 2 1 1 1 1
3 3 3 3 3 3 3 2 2 2

Implementation
¥ LRU has become preferred algorithm

¥ Difficult to implement
Ð Must record when each page was referenced

Ð Difficult to do in hardware

¥ Approximate LRU with a reference bit
Ð Periodically reset

Ð Set for a page when it is referenced

¥ Dirty bit

Dynamic Paging Algorithms
¥ The amount of physical memory -- the

number of page frames -- varies as the
process executes

¥ How much memory should be allocated?
Ð Fault rate must be ÒtolerableÓ

Ð Will change according to the phase of process

¥ Need to define a placement & replacement
policy

¥ Contemporary models based on working set

Working Set
¥ Intuitively, the working set is the set of

pages in the processÕs locality
Ð Somewhat imprecise

Ð Time varying

Ð Given k processes in memory, let mi(t) be # of
pages frames allocated to pi at time t

¥ mi(0) = 0
¥ Σi=1

k mi(t) ≤ |primary memory|

¥ Also have St(mi(t)) = St(mi(t-1)) ∪ Xt - Yt

¥ Or, more simply S(mi(t)) = S(mi(t-1)) ∪ Xt - Yt

Placed/Replaced Pages
¥ S(mi(t)) = S(mi(t-1)) ∪ Xt - Yt

¥ For the missing page
Ð Allocate a new page frame

Ð Xt = {rt} in the new page frame

¥ How should Yt be defined?
¥ Consider a parameter, τ, called the window

size
Ð Determine BKWDt(y) for every y∈ S(mi(t-1))

Ð if BKWDt(y) ≥ τ, unload y and deallocate frame

Ð if BKWDt(y) < τ do not disturb y

Working Set Principle
¥ Process pi should only be loaded and active

if it can be allocated enough page frames to
hold its entire working set

¥ The size of the working set is estimated
using τ
Ð Unfortunately, a ÒgoodÓ value of τ depends on

the size of the locality
Ð Empirically this works with a fixed τ

Example (τ = 3)

Frame 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
0 0

1

Example (τ = 4)

Frame 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
0 0

1

Segmentation
¥ Unit of memory movement is:

Ð Variably sized

Ð Defined by the programmer

¥ Two component addresses, <Seg#, offset>

¥ Address translation is more complex than
paging

¥ Ψt: segments x offsets → Physical Address ∪ {Ω}
¥ Ψt(i, j) = k

Segment Address Translation
¥ Ψt: segments x offsets → physical address ∪ {Ω}
¥ Ψt(i, j) = k
¥ σ: segments → segment addresses
¥ Ψt(σ(segName), j) = k

Segment Address Translation
¥ Ψt: segments x offsets → physical address ∪ {Ω}
¥ Ψt(i, j) = k
¥ σ: segments → segment addresses
¥ Ψt(σ(segName), j) = k
¥ λ: offset names → offset addresses
¥ Ψt(σ(segName), λ(offsetName)) = k
¥ Read implementation in Section 12.5.2

Address Translation

σ

<segmentName, offsetName>

λ

segment # offset

Ψt

Missing segment

Limit Base P

Limit

Relocation

+

?

To Memory Address Register

Implementation

¥ Segmentation requires special hardware
Ð Segment descriptor support

Ð Segment base registers (segment, code, stack)

Ð Translation hardware

¥ Some of translation can be static
Ð No dynamic offset name binding

Ð Limited protection

Multics

¥ Old, but still state-of-the-art segmentation

¥ Uses linkage segments to support sharing

¥ Uses dynamic offset name binding

¥ Requires sophisticated memory
management unit

¥ See pp 368-371

