Virtual Memory

Names, Virtual Addresses \& Physical Addresses

Compile/Link tools

Names, Virtual Addresses \& Physical Addresses

$\Psi_{\mathrm{t}}:$ Virtual Address Space \rightarrow Physical Address Space

Virtual Memory

- Uses dynamic address relocation/binding
- Generalization of base-limit registers
- Physical address corresponding to a compiletime address is not known until run time
- Idea is that only part of the address space is loaded as process executes
- This works because of program and data locality

Virtual Memory (cont)

- Use a dynamic virtual address map, Ψ_{t}

Address Formation

- Translation system produces an address space, but address are virtual instead of physical
- A virtual address, x :
- Is mapped to $\mathrm{y}=\Psi_{\mathrm{t}}(\mathrm{x})$ if x is loaded at physical address y
- Is mapped to Ω if x is not loaded
- The map changes as the program executes
- Ψ_{t} : Virtual Address \rightarrow Physical Address $\cup\{\Omega\}$

Size of Blocks of Memory

- Fixed size: Pages are moved back and forth between primary and secondary memory
- Variable size: Programmer-defined segments are the unit of movement
- Paging is the commercially dominant form of virtual memory today

Paging

- A page is a fixed sized block of virtual addresses
- A page frame is a fixed size block of physical memory, the same size as a page
- When a virtual address in page i is referenced by the CPU
- If page i is loaded at page frame j , the virtual address is relocated to page frame j
- If page is not loaded, the OS interrupts the process and loads the page into a page frame

Addresses

- Suppose there are $\mathrm{G}=2^{\mathrm{g}+\mathrm{h}}$ virtual addresses and $\mathrm{H}=2^{\mathrm{j}+\mathrm{h}}$ physical addresses
- Each page/page frame is 2^{h} addresses
- There are 2^{g} pages in the virtual address space
-2^{j} page frames are allocated to the process
- Rather than map individual addresses, Ψ_{t} maps the 2^{g} pages to the 2^{j} page frames

Address Translation

- Let $\mathrm{N}=\left\{\mathrm{d}_{0}, \mathrm{~d}_{1}, \ldots \mathrm{~d}_{\mathrm{n}-1}\right\}$ be the pages
- Let $\mathrm{M}=\left\{\mathrm{b}_{0}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}-1}\right\}$ be page frames
- Virtual address, i, satisfies $0 \leq i<G=2^{\text {g+h }}$
- Physical address, $\mathrm{k}=\mathrm{U} 2^{\mathrm{h}}+\mathrm{V}\left(0 \leq \mathrm{V}<\mathrm{G}=2^{\mathrm{h}}\right)$
$-U$ is page frame number
-V is the line number within the page
- $\Psi_{\mathrm{t}}:[0: \mathrm{G}-1] \rightarrow<\mathrm{U}, \mathrm{V}>\cup\{\Omega\}$
- Since every page is size $c=2^{h}$
- page number $=U=\lfloor\mathrm{i} / \mathrm{c}\rfloor$
- line number $=\mathrm{V}=\mathrm{i} \bmod \mathrm{c}$

Address Translation (cont)

Demand Paging

- Page fault occurs
- Process with missing page is interrupted
- Memory manager locates the missing page
- Page frame is unloaded (replacement policy)
- Page is loaded in the vacated page frame
- Page table is updated
- Process is restarted

Modeling Page Behavior

- Let $\omega=r_{1}, r_{2}, r_{3}, \ldots, r_{i}, \ldots$ be a page reference stream
$-r_{i}$ is the $i^{\text {th }}$ page \# referenced by the process
- The subscript is the virtual time for the process
- Given a page frame allocation of m, the memory state at time $t, S_{t}(m)$, is set of pages loaded
$-S_{t}(m)=S_{t-1}(m) \cup X_{t}-Y_{t}$
- X_{t} is the set of fetched pages at time t
- Y_{t} is the set of replaced pages at time t

More on Demand Paging

- If r_{t} was loaded at time $t-1, S_{t}(m)=S_{t-1}(m)$
- If r_{t} was not loaded at time $t-1$ and there were empty page frames

$$
-\mathrm{S}_{\mathrm{t}}(\mathrm{~m})=\mathrm{S}_{\mathrm{t}-1}(\mathrm{~m}) \cup\left\{\mathrm{r}_{\mathrm{t}}\right\}
$$

- If r_{t} was not loaded at time $t-1$ and there were no empty page frames
$-\mathrm{S}_{\mathrm{t}}(\mathrm{m})=\mathrm{S}_{\mathrm{t}-1}(\mathrm{~m}) \cup\left\{\mathrm{r}_{\mathrm{t}}\right\}-\{\mathrm{y}\}$
- The alternative is prefetch paging

Static Allocation, Demand Paging

- Number of page frames is static over the life of the process
- Fetch policy is demand
- Since $\mathrm{S}_{\mathrm{t}}(\mathrm{m})=\mathrm{S}_{\mathrm{t}-1}(\mathrm{~m}) \cup\left\{\mathrm{r}_{\mathrm{t}}\right\}-\{\mathrm{y}\}$, the replacement policy must choose y -- which uniquely identifies the paging policy

Random Replacement

- Replaced page, y , is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\bar{\omega}=2031203120316457$
Frame $20031 \begin{array}{lllllllllllll} & 1 & 0 & 3 & 1 & 2 & 0 & 3 & 1 & 6 & 4 & 5 & 7\end{array}$
0
1
2

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2													
1		$\underline{0}$	0													
2			$\underline{3}$													

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$
Frame $2 \begin{array}{llllllllllllllll} & 0 & 3 & 1 & 2 & 0 & 3 & 1 & 2 & 0 & 3 & 1 & 6 & 4 & 5 & 7\end{array}$
$\begin{array}{llll}0 & \underline{2} & 2 & 2 \\ 2 \\ 1 & & \underline{0} & 0 \\ 1 \\ 2 & & \underline{3} & 3\end{array}$

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2										
1		$\underline{0}$	0	$\underline{1}$	1	1										
2			$\underline{3}$	3	3	$\underline{0}$										

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	$\underline{3}$									
1		$\underline{0}$	0	$\underline{1}$	1	1	1									
2			$\underline{3}$	3	3	$\underline{0}$	0									

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	$\underline{3}$	3	3							
1		$\underline{0}$	0	$\underline{1}$	1	1	1	1	1							
2			$\underline{3}$	3	3	$\underline{0}$	0	0	$\underline{2}$							

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

| Frame | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 6 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\underline{2}$ | 2 | 2 | 2 | 2 | 2 | $\underline{3}$ | 3 | 3 | $\underline{0}$ | | | | | | |
| 1 | | $\underline{0}$ | 0 | $\underline{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | |
| 2 | | | $\underline{3}$ | 3 | 3 | $\underline{0}$ | 0 | 0 | $\underline{2}$ | 1 | | | | | | |

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

| Frame | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 6 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\underline{2}$ | 2 | 2 | 2 | 2 | 2 | $\underline{3}$ | 3 | 3 | $\underline{0}$ | 0 | | | | | |
| 1 | | $\underline{0}$ | 0 | $\underline{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | $\underline{3}$ | | | | | |
| 2 | | | $\underline{3}$ | 3 | 3 | $\underline{0}$ | 0 | 0 | $\underline{2}$ | 1 | 1 | | | | | |

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	$\underline{3}$	3	3	$\underline{0}$	0	0	0			
1		$\underline{0}$	0	1	1	1	1	1	1	1	$\underline{3}$	3	$\underline{6}$			
2			$\underline{3}$	3	3	$\underline{0}$	0	0	$\underline{2}$	1	1	1	1			

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	$\underline{3}$	3	3	$\underline{0}$	0	0	0	$\underline{4}$		
1		$\underline{0}$	0	1	1	1	1	1	1	1	$\underline{3}$	3	$\underline{6}$	6		
2			$\underline{3}$	3	3	$\underline{0}$	0	0	$\underline{2}$	1	1	1	1	1		

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	$\underline{3}$	3	3	$\underline{0}$	0	0	0	$\underline{4}$	4	
1		$\underline{0}$	0	1	1	1	1	1	1	1	$\underline{3}$	3	$\underline{6}$	6	$\underline{5}$	
2			$\underline{3}$	3	3	$\underline{0}$	0	0	$\underline{2}$	1	1	1	1	1	1	

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\Phi=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	$\underline{3}$	3	3	$\underline{0}$	0	0	0	$\underline{4}$	4	$\frac{7}{5}$
1		$\underline{0}$	0	1	1	1	1	1	1	1	$\underline{3}$	3	$\underline{6}$	6	$\underline{5}$	5
2			$\underline{3}$	3	3	$\underline{0}$	0	0	$\underline{2}$	1	1	1	1	1	1	1

Random Replacement

- Replaced page, y, is chosen from the m loaded page frames with probability $1 / \mathrm{m}$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	$\underline{3}$	3	3	$\underline{0}$	0	0	0	$\underline{4}$	4	$\frac{7}{5}$
1		$\underline{0}$	0	$\underline{1}$	1	1	1	1	1	1	$\underline{3}$	3	$\underline{6}$	6	$\underline{5}$	5
2			$\underline{3}$	3	3	$\underline{0}$	0	0	$\underline{2}$	1	1	1	1	1	1	1

13 page faults

- No knowledge of $\bar{\sigma} \Rightarrow$ not perform well
- Easy to implement

Belady's Optimal Algorithm

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)} F_{W D_{t}}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3
0	$\underline{2}$	2	2
1		$\underline{0}$	0
2			$\underline{3}$

Belady's Optimal Algorithm

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)} F_{W D_{t}}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2													
1		$\underline{0}$	0													
2			$\underline{3}$													

$\mathrm{FWD}_{4}(2)=1$
$\mathrm{FWD}_{4}(0)=2$
$\mathrm{FWD}_{4}(3)=3$

Belady's Optimal Algorithm

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)} F_{W D_{t}}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

| Frame | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 6 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\underline{2}$ | 2 | 2 | 2 | | | | | | | | | | | | |
| 1 | | $\underline{0}$ | 0 | 0 | | | | | | | | | | | | |
| 2 | | | $\underline{3}$ | $\underline{1}$ | | | | | | | | | | | | |

$\mathrm{FWD}_{4}(2)=1$
$\mathrm{FWD}_{4}(0)=2$
$\mathrm{FWD}_{4}(3)=3$

Belady's Optimal Algorithm

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)} F_{W D_{t}}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2										
1		$\underline{0}$	0	0	0	0										
2			$\underline{3}$	$\underline{1}$	1	1										

Belady's Optimal Algorithm

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)} F_{W D_{t}}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

| Frame | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 6 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\underline{2}$ | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | | | |
| 1 | | $\underline{0}$ | 0 | 0 | 0 | 0 | $\underline{3}$ | | | | | | | | | |
| 2 | | | $\underline{3}$ | $\underline{1}$ | 1 | 1 | 1 | | | | | | | | | |

$\mathrm{FWD}_{7}(2)=2$
$\mathrm{FWD}_{7}(0)=3$
$\mathrm{FWD}_{7}(1)=1$

Belady's Optimal Algorithm

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)} F_{W D_{t}}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	2	2	2	2	2	2	2	2	2	$\underline{0}$						
1		$\underline{0}$	0	0	0	0	$\underline{3}$	3	3	3						
2			$\underline{3}$	$\underline{1}$	1	1	1	1	1	1						

$\mathrm{FWD}_{10}(2)=\infty$
$\mathrm{FWD}_{10}(3)=2$
$\mathrm{FWD}_{10}(1)=3$

Belady's Optimal Algorithm

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)} F_{W D_{t}}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	2	2	2	2	2	2	2	2	2	$\underline{0}$	0	0				
1		$\underline{0}$	0	0	0	0	$\underline{3}$	3	3	3	3	3				
2			$\underline{3}$	$\underline{1}$	1	1	1	1	1	1	1	1				

$\mathrm{FWD}_{13}(0)=\infty$
$\mathrm{FWD}_{13}(3)=\infty$
$\mathrm{FWD}_{13}(1)=\infty$

Belady's Optimal Algorithm

- Replace page with maximal forward distance: $y_{t}=\max _{x e S}^{t-1(m)} F_{t} \operatorname{FWD}_{t}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	2	2	2	0	0	0	0	$\underline{4}$	4	4
1		$\underline{0}$	0	0	0	0	$\underline{3}$	3	3	3	3	3	$\underline{6}$	6	6	$\frac{7}{3}$
2			$\underline{3}$	$\underline{1}$	1	1	1	1	1	1	1	1	1	1	$\underline{5}$	5

10 page faults

- Perfect knowledge of $\bar{\sigma} \Rightarrow$ perfect performance
- Impossible to implement

Least Recently Used (LRU)

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)}$ BKWD $_{t}(x)$

Let page reference stream, $\bar{\Phi}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2													
1		$\underline{0}$	0													
2			$\underline{3}$													

$\mathrm{BKWD}_{4}(2)=3$
$\mathrm{BKWD}_{4}(0)=2$
$\mathrm{BKWD}_{4}(3)=1$

Least Recently Used (LRU)

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)}$ BKWD $_{t}(x)$

Let page reference stream, $\bar{\Phi}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	$\underline{1}$												
1		$\underline{0}$	0	0												
2			3	3												

$\mathrm{BKWD}_{4}(2)=3$
$\mathrm{BKWD}_{4}(0)=2$
$\mathrm{BKWD}_{4}(3)=1$

Least Recently Used (LRU)

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)}$ BKWD $_{t}(x)$

Let page reference stream, $\bar{\Phi}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	$\underline{1}$	1											
1		$\underline{0}$	0	0	$\underline{2}$											
2			$\underline{3}$	3	3											

$\mathrm{BKWD}_{5}(1)=1$
$\mathrm{BKWD}_{5}(0)=3$
$\mathrm{BKWD}_{5}(3)=2$

Least Recently Used (LRU)

- Replace page with maximal forward distance: $y_{t}=\max _{x e S}^{t-1(m)} B K W D_{t}(x)$

Let page reference stream, $\bar{\Phi}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	$\underline{1}$	1	1										
1		$\underline{0}$	0	0	$\underline{2}$	2										
2			$\underline{3}$	3	3	$\underline{0}$										

$\mathrm{BKWD}_{6}(1)=2$
$\mathrm{BKWD}_{6}(2)=1$
$\mathrm{BKWD}_{6}(3)=3$

Least Recently Used (LRU)

- Replace page with maximal forward distance: $y_{t}=\max _{x e S t-1(m)}$ BKWD $_{t}(x)$

Let page reference stream, $\bar{\Phi}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	$\underline{1}$	1	1	$\underline{3}$	3	3	$\underline{0}$	0	0	$\underline{6}$	6	6	$\underline{7}$
1		$\underline{0}$	0	0	$\underline{2}$	2	2	$\underline{1}$	1	1	$\underline{3}$	3	3	$\underline{4}$	4	4
2			$\underline{3}$	3	3	$\underline{0}$	0	0	$\underline{2}$	2	2	$\underline{1}$	1	1	$\underline{5}$	5

Least Recently Used (LRU)

- Replace page with maximal forward distance: $y_{t}=\max _{x e S}^{t-1(m)}$ BKWD $_{t}(x)$

Let page reference stream, $\bar{\Phi}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2	2	3	2	2	2	2	6	6	6	6
1		$\underline{0}$	0	0	0	0	0	0	0	0	0	0	0	$\underline{4}$	4	4
2			$\underline{3}$	3	3	3	3	3	3	3	3	3	3	3	5	5
3				$\underline{1}$	1	1	1	1	1	1	1	1	1	1	1	$\underline{7}$

- Backward distance is a good predictor of forward distance -- locality

Least Frequently Used (LFU)

- Replace page with minimum use: $y_{t}=\min _{x e S}^{t-1(m)} \operatorname{FREQ}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2													
1		$\underline{0}$	0													
2			$\underline{3}$													

$\operatorname{FREQ}_{4}(2)=1$
$\mathrm{FREQ}_{4}(0)=1$
$\operatorname{FREQ}_{4}(3)=1$

Least Frequently Used (LFU)

- Replace page with minimum use: $y_{t}=\min _{x e S}^{t-1(m)} \operatorname{FREQ}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$
Frame $2 \begin{array}{llllllllllllllll} & 0 & 3 & 1 & 2 & 0 & 3 & 1 & 2 & 0 & 3 & 1 & 6 & 4 & 5 & 7\end{array}$
$\begin{array}{llll}0 & \underline{2} & 2 & 2\end{array} \quad 2$
$\operatorname{FREQ}_{4}(2)=1$
$\mathrm{FREQ}_{4}(0)=1$
$\operatorname{FREQ}_{4}(3)=1$

Least Frequently Used (LFU)

- Replace page with minimum use: $y_{t}=\min _{x e S t-1(m)} \operatorname{FREQ}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2										
1		$\underline{0}$	0	$\underline{1}$	1	1										
2			$\underline{3}$	3	3	$\underline{0}$										

$\operatorname{FREQ}_{6}(2)=2$
$\operatorname{FREQ}_{6}(1)=1$
$\operatorname{FREQ}_{6}(3)=1$

Least Frequently Used (LFU)

- Replace page with minimum use: $y_{t}=\min _{x e S t-1(m)} \operatorname{FREQ}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	2	2	2										
1		$\underline{0}$	0	$\underline{1}$	1	1										
2			$\underline{3}$	3	3	$\underline{0}$										

$\operatorname{FREQ}_{7}(2)=$?
$\operatorname{FREQ}_{7}(1)=$?
$\operatorname{FREQ}_{7}(0)=$?

First In First Out (FIFO)

- Replace page that has been in memory the longest: $y_{t}=\max _{x e S t-1(m)} A G E(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	$\underline{2}$	2	2	$\underline{1}$												
1		$\underline{0}$	0	0												
2			$\underline{3}$	3												

First In First Out (FIFO)

- Replace page that has been in memory the longest: $y_{t}=\max _{x e S t-1(m)} \operatorname{AGE}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

| Frame | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 6 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\underline{2}$ | 2 | 2 | | | | | | | | | | | | | |
| 1 | | $\underline{0}$ | 0 | | | | | | | | | | | | | |
| 2 | | | | $\underline{3}$ | | | | | | | | | | | | |

$$
\begin{aligned}
\operatorname{AGE}_{4}(2) & =3 \\
\operatorname{AGE}_{4}(0) & =2 \\
\operatorname{AGE}_{4}(3) & =1
\end{aligned}
$$

First In First Out (FIFO)

- Replace page that has been in memory the longest: $y_{t}=\max _{x e S t-1(m)} \operatorname{AGE}(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

| Frame | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 6 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\underline{2}$ | 2 | 2 | $\underline{1}$ | | | | | | | | | | | | |
| 1 | | $\underline{0}$ | 0 | 0 | | | | | | | | | | | | |
| 2 | | | $\underline{3}$ | 3 | | | | | | | | | | | | |

$$
\begin{aligned}
\mathrm{AGE}_{4}(2) & =3 \\
\mathrm{AGE}_{4}(0) & =2 \\
\mathrm{AGE}_{4}(3) & =1
\end{aligned}
$$

First In First Out (FIFO)

- Replace page that has been in memory the longest: $y_{t}=\max _{x e S t-1(m)} A G E(x)$

Let page reference stream, $\bar{\omega}=2031203120316457$

| Frame | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 6 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\underline{2}$ | 2 | 2 | $\underline{1}$ | | | | | | | | | | | | |
| 1 | | $\underline{0}$ | 0 | 0 | | | | | | | | | | | | |
| 2 | | | $\underline{3}$ | 3 | | | | | | | | | | | | |

$$
\begin{aligned}
\operatorname{AGE}_{5}(1) & =? \\
\operatorname{AGE}_{5}(0) & =? \\
\operatorname{AGE}_{5}(3) & =?
\end{aligned}
$$

Belady's Anomaly

Let page reference stream, $\bar{\omega}=012301401234$

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	$\underline{3}$	3	3	$\underline{4}$	4	4	4	4	4
1		1	1	1	$\underline{0}$	0	0	0	0	$\underline{2}$	2	2
2			$\underline{2}$	2	2	$\underline{1}$	1	1	1	1	$\underline{3}$	3
Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	0	0	0	$\underline{4}$	4	4	4	$\underline{3}$	3
1		1	1	1	1	1	1	0	0	0	0	$\underline{4}$
2			$\underline{2}$	2	2	2	2	2	1	1	1	1
3				$\underline{3}$	3	3	3	3	3	$\underline{2}$	2	2

- FIFO with $\mathrm{m}=3$ has 9 faults
- FIFO with $\mathrm{m}=4$ has 10 faults

Stack Algorithms

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with $\mathrm{m}+1$

LRU

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	3								
1			$\underline{1}$	1	1							
2				$\underline{2}$	2							
Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	0								
1		$\underline{1}$	1	1								
2			$\underline{2}$	2								
3				$\underline{3}$								

Stack Algorithms

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with $\mathrm{m}+1$

LRU

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	3	3							
1		$\underline{1}$	1	1	1							
2			$\underline{2}$	2	0							

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	0	0							
1			1	1	1	1						
2				2	2	2						
3					3	3						

Stack Algorithms

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with $\mathrm{m}+1$

LRU

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	3	3	3						
1		$\underline{1}$	1	1	$\underline{0}$	0						
2			$\underline{2}$	2	2	$\underline{1}$						

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	0	0	0						
1			1	1	1	1	1					
2				2	2	2	2					
3				3	3	3						

Stack Algorithms

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with $\mathrm{m}+1$

LRU

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	$\underline{3}$	3	3	$\underline{4}$					
1		$\underline{1}$	1	1	$\underline{0}$	0	0					
2			$\underline{2}$	2	2	$\underline{1}$	1					

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	0	0	0	0					
1		1	1	1	1	1	1					
2			$\underline{2}$	2	2	2	$\underline{4}$					
3				3	3	3	3					

Stack Algorithms

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with $\mathrm{m}+1$

LRU

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	$\underline{3}$	3	3	$\underline{4}$	4	4	2	2	2
1		$\underline{1}$	1	1	0	0	0	0	0	0	3	3
2			$\underline{2}$	2	2	1	1	1	1	1	1	$\underline{4}$
Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	0	0	0	0	0	0	0	0	$\underline{4}$
1		$\underline{1}$	1	1	1	1	1	1	1	1	1	1
2			$\underline{2}$	2	2	2	$\underline{4}$	4	4	4	3	3
3				$\underline{3}$	3	3	3	3	3	$\underline{2}$	2	2

Stack Algorithms

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with $\mathrm{m}+1$

FIFO

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	$\underline{3}$	3	3	$\underline{4}$	4	4	4	4	4
1		1	1	1	$\underline{0}$	0	0	0	0	$\underline{2}$	2	2
2			$\underline{2}$	2	2	$\underline{1}$	1	1	1	1	3	3
Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	$\underline{0}$	0	0	0	0	0	$\underline{4}$	4	4	4	3	3
1		$\underline{1}$	1	1	1	1	1	$\underline{0}$	0	0	0	$\underline{4}$
2			$\underline{2}$	2	2	2	2	2	$\underline{1}$	1	1	1
3			$\underline{3}$	3	3	3	3	3	$\underline{2}$	2	2	

Implementation

- LRU has become preferred algorithm
- Difficult to implement
- Must record when each page was referenced
- Difficult to do in hardware
- Approximate LRU with a reference bit
- Periodically reset
- Set for a page when it is referenced
- Dirty bit

Dynamic Paging Algorithms

- The amount of physical memory -- the number of page frames -- varies as the process executes
- How much memory should be allocated?
- Fault rate must be "tolerable"
- Will change according to the phase of process
- Need to define a placement \& replacement policy
- Contemporary models based on working set

Working Set

- Intuitively, the working set is the set of pages in the process's locality
- Somewhat imprecise
- Time varying
- Given k processes in memory, let $\mathrm{m}_{\mathrm{i}}(\mathrm{t})$ be \# of pages frames allocated to p_{i} at time t
- $\mathrm{m}_{\mathrm{i}}(0)=0$
- $\Sigma_{\mathrm{i}=1}{ }^{\mathrm{k}} \mathrm{m}_{\mathrm{i}}(\mathrm{t}) \leq \mid$ primary memory \mid
- Also have $\mathrm{S}_{\mathrm{t}}\left(\mathrm{m}_{\mathrm{i}}(\mathrm{t})\right)=\mathrm{S}_{\mathrm{t}}\left(\mathrm{m}_{\mathrm{i}}(\mathrm{t}-1)\right) \cup \mathrm{X}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}}$
- Or, more simply $\mathrm{S}\left(\mathrm{m}_{\mathrm{i}}(\mathrm{t})\right)=\mathrm{S}\left(\mathrm{m}_{\mathrm{i}}(\mathrm{t}-1)\right) \cup \mathrm{X}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}}$

Placed/Replaced Pages

- $\mathrm{S}\left(\mathrm{m}_{\mathrm{i}}(\mathrm{t})\right)=\mathrm{S}\left(\mathrm{m}_{\mathrm{i}}(\mathrm{t}-1)\right) \cup \mathrm{X}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}}$
- For the missing page
- Allocate a new page frame
$-X_{t}=\left\{r_{t}\right\}$ in the new page frame
- How should Y_{t} be defined?
- Consider a parameter, τ, called the window size
- Determine BKWD $_{\mathrm{t}}(\mathrm{y})$ for every $\mathrm{y} \in \mathrm{S}\left(\mathrm{m}_{\mathrm{i}}(\mathrm{t}-1)\right)$
- if $B K W D_{t}(y) \geq \tau$, unload y and deallocate frame
- if $\mathrm{BKWD}_{\mathrm{t}}(\mathrm{y})<\tau$ do not disturb y

Working Set Principle

- Process p_{i} should only be loaded and active if it can be allocated enough page frames to hold its entire working set
- The size of the working set is estimated using τ
- Unfortunately, a "good" value of τ depends on the size of the locality
- Empirically this works with a fixed τ

Example ($\tau=3$)

Frame $0 \begin{array}{llllllllllllllll} & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ $0 \quad \underline{0}$
\# 1

Example $(\tau=4)$

Frame $0 \begin{array}{llllllllllllllll}0 & 1 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ $0 \quad \underline{0}$
\# 1

Segmentation

- Unit of memory movement is:
- Variably sized
- Defined by the programmer
- Two component addresses, <Seg\#, offset>
- Address translation is more complex than paging
- Ψ_{t} : segments x offsets \rightarrow Physical Address $\cup\{\Omega\}$
- $\Psi_{\mathrm{t}}(\mathrm{i}, \mathrm{j})=\mathrm{k}$

Segment Address Translation

- Ψ_{t} : segments x offsets \rightarrow physical address $\cup\{\Omega\}$
- $\Psi_{\mathrm{t}}(\mathrm{i}, \mathrm{j})=\mathrm{k}$
- σ : segments \rightarrow segment addresses
- $\Psi_{\mathrm{t}}(\sigma(\operatorname{segName}), \mathrm{j})=\mathrm{k}$

Segment Address Translation

- Ψ_{t} : segments x offsets \rightarrow physical address $\cup\{\Omega\}$
- $\Psi_{\mathrm{t}}(\mathrm{i}, \mathrm{j})=\mathrm{k}$
- σ : segments \rightarrow segment addresses
- $\Psi_{\mathrm{t}}(\sigma($ segName $), \mathrm{j})=\mathrm{k}$
- λ : offset names \rightarrow offset addresses
- $\Psi_{\mathrm{t}}(\sigma($ segName $), \lambda($ offsetName $))=\mathrm{k}$
- Read implementation in Section 12.5.2

Address Translation

Implementation

- Segmentation requires special hardware
- Segment descriptor support
- Segment base registers (segment, code, stack)
- Translation hardware
- Some of translation can be static
- No dynamic offset name binding
- Limited protection

Multics

- Old, but still state-of-the-art segmentation
- Uses linkage segments to support sharing
- Uses dynamic offset name binding
- Requires sophisticated memory management unit
- See pp 368-371

