Virtual Memory

Names, Virtual Addresses & Physical Addresses

Compile/Link tools

Names, Virtual Addresses & Physical Addresses

 Ψ_t : Virtual Address Space \rightarrow Physical Address Space

Virtual Memory

- Uses dynamic address relocation/binding
 - Generalization of base-limit registers
 - Physical address corresponding to a compiletime address is not known until run time
- Idea is that <u>only part of the address space is</u> <u>loaded</u> as process executes
- This works because of program and data locality

Virtual Memory (cont)

• Use a dynamic virtual address map, Ψ_t

Address Formation

- Translation system produces an address space, but address are *virtual* instead of physical
- A virtual address, x:
 - Is mapped to $y = \Psi_t(x)$ if x is loaded at physical address y
 - Is mapped to Ω if x is not loaded
- The map changes as the program executes
- Ψ_t : Virtual Address \rightarrow Physical Address $\cup \{\Omega\}$

Size of Blocks of Memory

- Fixed size: <u>*Pages*</u> are moved back and forth between primary and secondary memory
- Variable size: Programmer-defined <u>segments</u> are the unit of movement
- Paging is the commercially dominant form of virtual memory today

Paging

- A *page* is a fixed sized block of virtual addresses
- A *page frame* is a fixed size block of physical memory, the same size as a page
- When a virtual address in page i is referenced by the CPU
 - If page i is loaded at page frame j, the virtual address is relocated to page frame j
 - If page is not loaded, the OS interrupts the process and loads the page into a page frame

Addresses

- Suppose there are G=2^{g+h} virtual addresses and H=2^{j+h} physical addresses
 - Each page/page frame is 2^h addresses
 - There are 2^g pages in the virtual address space
 - -2^{j} page frames are allocated to the process
 - Rather than map individual addresses, Ψ_t maps the 2^g pages to the 2^j page frames

Address Translation

- Let $N = \{d_0, d_1, \dots, d_{n-1}\}$ be the pages
- Let $M = \{b_0, b_1, ..., b_{m-1}\}$ be page frames
- Virtual address, i, satisfies $0 \le i \le G = 2^{g+h}$
- Physical address, $k = U2^{h+V} (0 \le V \le G = 2^{h})$
 - U is page frame number
 - V is the line number within the page
 - $\Psi_t: [0:G-1] \to \langle U, V \rangle \cup \{\Omega\}$
 - Since every page is size c=2^h
 - page number = $U = \lfloor i/c \rfloor$
 - line number = $V = i \mod c$

Address Translation (cont)

Demand Paging

- Page fault occurs
- Process with missing page is interrupted
- Memory manager locates the missing page
- Page frame is unloaded (replacement policy)
- Page is loaded in the vacated page frame
- Page table is updated
- Process is restarted

Modeling Page Behavior

• Let $\omega = r_1, r_2, r_3, ..., r_i, ...$ be a <u>page</u> <u>reference stream</u>

 $-r_i$ is the ith page # referenced by the process

- The subscript is the *virtual time* for the process
- Given a page frame allocation of m, the memory state at time t, $S_t(m)$, is set of pages loaded
 - $S_t(m) = S_{t-1}(m) \cup X_t Y_t$
 - X_t is the set of fetched pages at time t
 - Y_t is the set of replaced pages at time t

More on Demand Paging

- If r_t was loaded at time t-1, $S_t(m) = S_{t-1}(m)$
- If r_t was not loaded at time t-1 and there were empty page frames

 $-S_t(m) = S_{t-1}(m) \cup \{r_t\}$

- If r_t was not loaded at time t-1 and there were no empty page frames $-S_t(m) = S_{t-1}(m) \cup \{r_t\} - \{y\}$
- The alternative is *prefetch* paging

Static Allocation, Demand Paging

- Number of page frames is static over the life of the process
- Fetch policy is demand
- Since $S_t(m) = S_{t-1}(m) \cup \{r_t\} \{y\}$, the replacement policy <u>must choose y</u> -- which uniquely identifies the paging policy

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$ Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7 0 1 2

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\varpi = 2031203120316457$ Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7 0 <u>2</u> 2 2 1 <u>0</u> 0 2 <u>3</u>

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 $\underline{2}$ 2
 2
 2
 2
 2
 1
 6
 4
 5
 7

 1
 $\underline{0}$ 0
 $\underline{1}$ 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2<

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 2
 2
 1
 6
 4
 5
 7

 1
 <u>0</u>
 0
 <u>1</u>
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 <u>3</u>
 6
 4
 5
 7

 1
 <u>2</u>
 2
 2
 2
 <u>3</u>

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 <u>3</u>
 3
 3
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 <td

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 3
 3
 <u>0</u>
 4
 5
 7

 1
 <u>2</u>
 2
 2
 2
 <u>3</u>
 3
 <u>0</u>

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

```
      Frame
      2
      0
      3
      1
      2
      0
      3
      1
      6
      4
      5
      7

      0
      2
      2
      2
      2
      2
      3
      3
      0
      0
      1
      6
      4
      5
      7

      1
      2
      2
      2
      2
      2
      3
      3
      0
      0
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 2
 2
 3
 3
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 6
 4
 5
 7

 0
 2
 2
 2
 2
 3
 3
 3
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 2
 2
 3
 3
 0
 0
 0
 0
 4
 5
 7

 1
 2
 2
 2
 2
 2
 3
 3
 0
 0
 0
 0
 4
 5
 7

 1
 0
 0
 1
 1
 1
 1
 1
 3
 3
 6
 6

 2
 3
 3
 0
 0
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 2
 2
 3
 3
 0
 0
 0
 0
 4
 4

 1
 0
 0
 1
 1
 1
 1
 1
 3
 3
 6
 6
 5

 2
 3
 3
 0
 0
 2
 1
 1
 1
 1
 1

 2
 3
 3
 0
 0
 2
 1
 1
 1
 1
 1

 2
 3
 3
 0
 0
 0
 2
 1
 1
 1
 1
 1

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 2
 2
 3
 3
 0
 0
 0
 0
 4
 4
 7

 1
 0
 0
 1
 1
 1
 1
 1
 3
 3
 6
 6
 5
 5

 2
 3
 3
 0
 0
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <td

• Replaced page, y, is chosen from the m loaded page frames with probability 1/m

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 2
 2
 3
 3
 0
 0
 0
 0
 4
 4
 7

 1
 0
 0
 1
 1
 1
 1
 1
 3
 3
 6
 6
 5
 5

 2
 3
 3
 0
 0
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <td

13 page faults

- No knowledge of $\varpi \Rightarrow$ not perform well
- Easy to implement

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}FWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 2
 1
 6
 4
 5
 7

 1
 <u>0</u>
 0
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 <

 Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}FWD_t(x)

Let page reference stream, $\boldsymbol{\varpi} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 1
 6
 4
 5
 7

 1
 <u>0</u>
 0
 2
 2
 2
 1
 1
 6
 4
 5
 7

 2
 <u>3</u>
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

$$FWD_4(2) = 1$$

 $FWD_4(0) = 2$
 $FWD_4(3) = 3$

 Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}FWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

Frame 2 0 3 1 2 0 3 1 2 0 3 1 6 4 5 7 0 $\underline{2}$ 2 2 2 2 1 $\underline{0}$ 0 0 2 3 <u>1</u> $FWD_{2}(2) = 1$

$$FWD_4(0) = 2$$

 $FWD_4(3) = 3$

 Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}FWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 2
 2
 1
 6
 4
 5
 7

 1
 <u>0</u>
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

 Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}FWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 $\underline{2}$ 2
 2
 2
 2
 2
 2
 1
 1
 6
 4
 5
 7

 1
 $\underline{0}$ 0
 0
 0
 $\underline{3}$ 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1<

$$FWD_7(2) = 2$$

 $FWD_7(0) = 3$
 $FWD_7(1) = 1$

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}FWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 2
 2
 <u>0</u>
 <td

$$FWD_{10}(2) = \infty$$

 $FWD_{10}(3) = 2$
 $FWD_{10}(1) = 3$

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}FWD_t(x)

Let page reference stream, $\varpi = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 2
 2
 2
 0
 0
 0
 1
 6
 4
 5
 7

 1
 <u>2</u>
 2
 2
 2
 2
 2
 2
 <u>0</u>
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

$$FWD_{13}(0) = \infty$$
$$FWD_{13}(3) = \infty$$
$$FWD_{13}(1) = \infty$$

 Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}FWD_t(x)

Let page reference stream, $\varpi = 2031203120316457$

Frame	2	0	3	1	2	0	3	1	2	0	3	1	6	4	5	7
0	2	2	2	2	2	2	2	2	2	0	0	0	0	4	4	4
1		0	0	0	0	0	<u>3</u>	3	3	3	3	3	6	6	6	<u>7</u>
2			<u>3</u>	1	1	1	1	1	1	1	1	1	1	1	<u>5</u>	5

10 page faults

- Perfect knowledge of $\varpi \Rightarrow$ perfect performance
- Impossible to implement

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}BKWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 2
 1
 1
 6
 4
 5
 7

 1
 <u>0</u>
 0
 2
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

 $BKWD_4(2) = 3$ $BKWD_4(0) = 2$ $BKWD_4(3) = 1$

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}BKWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

> $BKWD_4(2) = 3$ $BKWD_4(0) = 2$ $BKWD_4(3) = 1$

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}BKWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</

 $BKWD_{5}(1) = 1$ $BKWD_{5}(0) = 3$ $BKWD_{5}(3) = 2$

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}BKWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</

$$BKWD_{6}(1) = 2$$

 $BKWD_{6}(2) = 1$
 $BKWD_{6}(3) = 3$

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}BKWD_t(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 1
 1
 1
 3
 3
 0
 0
 0
 6
 6
 6
 7

 1
 0
 0
 0
 2
 2
 2
 1
 1
 1
 3
 3
 3
 4
 4

 2
 3
 3
 0
 0
 2
 2
 1
 1
 1
 3
 3
 3
 4
 4

 2
 3
 3
 0
 0
 0
 2
 2
 1
 1
 1
 5
 5

• Replace page with maximal forward distance: y_t = max _{xeS t-1(m)}BKWD_t(x)

Let page reference stream, $\varpi = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 2
 3
 2
 2
 2
 <u>6</u>
 6
 6
 6

 1
 <u>0</u>
 0
 0
 0
 0
 0
 0
 0
 0
 <u>4</u>
 4

 2
 <u>3</u>
 3
 3
 3
 3
 3
 3
 3
 3
 <u>5</u>
 5

 3
 <u>1</u>
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

• Backward distance is a good predictor of forward distance -- locality

• Replace page with minimum use: $y_t = \min_{x \in S t-1(m)} FREQ(x)$

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 2
 2
 1
 1
 6
 4
 5
 7

 1
 0
 0
 2
 3
 1
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

```
FREQ_4(2) = 1
FREQ_4(0) = 1
FREQ_4(3) = 1
```

• Replace page with minimum use: $y_t = \min_{x \in S t-1(m)} FREQ(x)$

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 2
 2
 1
 5
 7

 1
 <u>0</u>
 0
 <u>1</u>
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

$$FREQ_4(2) = 1$$

 $FREQ_4(0) = 1$
 $FREQ_4(3) = 1$

• Replace page with minimum use: $y_t = \min_{x \in S t-1(m)} FREQ(x)$

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 $\underline{2}$ 2
 2
 2
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

$$FREQ_{6}(2) = 2$$

 $FREQ_{6}(1) = 1$
 $FREQ_{6}(3) = 1$

• Replace page with minimum use: $y_t = \min_{x \in S t-1(m)} FREQ(x)$

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 2
 2
 2
 2
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</

 Replace page that has been in memory the longest: y_t = max _{xeS t-1(m)}AGE(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 <u>1</u>
 <td

 Replace page that has been in memory the longest: y_t = max _{xeS t-1(m)}AGE(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 <u>2</u>
 2
 2
 2
 1
 1
 6
 4
 5
 7

 1
 <u>0</u>
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

$$AGE_4(2) = 3$$

 $AGE_4(0) = 2$
 $AGE_4(3) = 1$

• Replace page that has been in memory the longest: y_t = max _{xeS t-1(m)}AGE(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

$$AGE_4(2) = 3$$

 $AGE_4(0) = 2$
 $AGE_4(3) = 1$

• Replace page that has been in memory the longest: y_t = max _{xeS t-1(m)}AGE(x)

Let page reference stream, $\overline{\omega} = 2031203120316457$

 Frame
 2
 0
 3
 1
 2
 0
 3
 1
 2
 0
 3
 1
 6
 4
 5
 7

 0
 $\underline{2}$ 2
 $\underline{1}$.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

$$AGE_{5}(1) = ?$$

 $AGE_{5}(0) = ?$
 $AGE_{5}(3) = ?$

Belady's Anomaly

Let page reference stream, $\varpi = 0.12301401234$

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	0	0	0	<u>3</u>	3	3	<u>4</u>	4	4	4	4	4
1		1	1	1	0	0	0	0	0	2	2	2
2			2	2	2	<u>1</u>	1	1	1	1	<u>3</u>	3
Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	0	0	0	0	0	0	<u>4</u>	4	4	4	<u>3</u>	3
1		1	1	1	1	1	1	0	0	0	0	4
2			2	2	2	2	2	2	1	1	1	1
3				<u>3</u>	3	3	3	3	3	2	2	2

- FIFO with m = 3 has 9 faults
- FIFO with m = 4 has 10 faults

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with m+1

LRU	Frame 0 1 2	0 <u>0</u>	1 0 <u>1</u>	2 0 1 <u>2</u>	3 3 1 2	0	1	4	0	1	2	3	4
	Frame	0	1	2	3	0	1	4	0	1	2	3	4
	0	0	0	0	0								
	1		1	1	1								
	2			2	2								
	3				<u>3</u>								

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with m+1

τοτ	Frame	0	1	2	3	0	1	4	0	1	2	3	4	
LKU	0	0	0	0	3	3								
	1		1	1	1	1								
	2			2	2	0								
	Frame	0	1	2	3	0	1	4	0	1	2	3	4	
	0	0	0	0	0	0								
	1		1	1	1	1								
	2			<u>2</u>	2	2								
	3				<u>3</u>	3								

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with m+1

	Frame	0	1	2	3	0	1	4	0	1	2	3	4	
LKU	0	0	0	0	3	3	3							
	1		1	1	1	0	0							
	2			<u>2</u>	2	2	1							
	Frame	0	1	2	3	0	1	4	0	1	2	3	4	
	0	0	0	0	0	0	0							
	1		1	1	1	1	1							
	2			2	2	2	2							
	3				3	3	3							

- Some algorithms are well-behaved
- Inclusion Property: Pages loaded at time t with m is also loaded at time t with m+1

τοτ	Frame	0	1	2	3	0	1	4	0	1	2	3	4
LKU	0	0	0	0	<u>3</u>	3	3	4					
	1		1	1	1	0	0	0					
	2			2	2	2	<u>1</u>	1					
	Frame	0	1	2	3	0	1	4	0	1	2	3	4
	0	0	0	0	0	0	0	0					
	1		1	1	1	1	1	1					
	2			<u>2</u>	2	2	2	<u>4</u>					
	3				3	3	3	3					

• Some algorithms are well-behaved

Ι

• Inclusion Property: Pages loaded at time t with m is also loaded at time t with m+1

ΠΙ	Frame	0	1	2	3	0	1	4	0	1	2	3	4
ιKU	0	0	0	0	<u>3</u>	3	3	4	4	4	2	2	2
	1		1	1	1	0	0	0	0	0	0	<u>3</u>	3
	2			2	2	2	1	1	1	1	1	1	4
	Frame	0	1	2	3	0	1	4	0	1	2	3	4
	0	0	0	0	0	0	0	0	0	0	0	0	4
	1		1	1	1	1	1	1	1	1	1	1	1
	2			<u>2</u>	2	2	2	4	4	4	4	<u>3</u>	3
	3				<u>3</u>	3	3	3	3	3	2	2	2

• Some algorithms are well-behaved

FIFO

• Inclusion Property: Pages loaded at time t with m is also loaded at time t with m+1

Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	0	0	0	3	3	3	<u>4</u>	4	4	4	4	4
1		1	1	1	0	0	0	0	0	2	2	2
2			<u>2</u>	2	2	1	1	1	1	1	<u>3</u>	3
Frame	0	1	2	3	0	1	4	0	1	2	3	4
0	0	0	0	0	0	0	<u>4</u>	4	4	4	<u>3</u>	3
1		1	1	1	1	1	1	0	0	0	0	4
2			2	2	2	2	2	2	1	1	1	1
3				3	3	3	3	3	3	2	2	2

Implementation

- LRU has become preferred algorithm
- Difficult to implement
 - Must record when each page was referenced
 - Difficult to do in hardware
- Approximate LRU with a reference bit
 - Periodically reset
 - Set for a page when it is referenced
- Dirty bit

Dynamic Paging Algorithms

- The amount of physical memory -- the number of page frames -- varies as the process executes
- How much memory should be allocated?
 - Fault rate must be "tolerable"
 - Will <u>change</u> according to the phase of process
- Need to define a *placement* & replacement policy
- Contemporary models based on *working set*

Working Set

- Intuitively, the working set is the set of pages in the process's locality
 - Somewhat imprecise
 - Time varying
 - Given k processes in memory, let $m_i(t)$ be # of pages frames allocated to p_i at time t
 - $m_i(0) = 0$
 - $\sum_{i=1}^{k} m_i(t) \le |\text{primary memory}|$
 - Also have $S_t(m_i(t)) = S_t(m_i(t-1)) \cup X_t Y_t$
 - Or, more simply $S(m_i(t)) = S(m_i(t-1)) \cup X_t Y_t$

Placed/Replaced Pages

- $S(m_i(t)) = S(m_i(t-1)) \cup X_t Y_t$
- For the missing page
 - Allocate a new page frame
 - $-X_t = \{r_t\}$ in the new page frame
- How should Y_t be defined?
- Consider a parameter, τ , called the <u>window</u> <u>size</u>
 - Determine BKWD_t(y) for every $y \in S(m_i(t-1))$
 - − if BKWD_t(y) ≥ τ , unload y and deallocate frame
 - if BKWD_t(y) < τ do not disturb y

Working Set Principle

- Process p_i should only be loaded and active if it can be allocated enough page frames to hold its entire working set
- The size of the working set is <u>estimated</u> using τ
 - Unfortunately, a "good" value of τ depends on the size of the locality
 - Empirically this works with a fixed τ

Example ($\tau = 3$)

Frame 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 0 <u>0</u>

1

Example ($\tau = 4$)

Frame 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 0 <u>0</u>

1

Segmentation

- Unit of memory movement is:
 - Variably sized
 - Defined by the programmer
- Two component addresses, <Seg#, offset>
- Address translation is more complex than paging
 - Ψ_t : segments x offsets \rightarrow Physical Address $\cup \{\Omega\}$
 - $\Psi_t(i, j) = k$

Segment Address Translation

- Ψ_t : segments x offsets \rightarrow physical address $\cup \{\Omega\}$
- $\Psi_t(i, j) = k$
- σ : segments \rightarrow segment addresses
- $\Psi_t(\sigma(\text{segName}), j) = k$

Segment Address Translation

- Ψ_t : segments x offsets \rightarrow physical address $\cup \{\Omega\}$
- $\Psi_t(i, j) = k$
- σ : segments \rightarrow segment addresses
- $\Psi_t(\sigma(\text{segName}), j) = k$
- λ : offset names \rightarrow offset addresses
- $\Psi_t(\sigma(\text{segName}), \lambda(\text{offsetName})) = k$
- Read implementation in Section 12.5.2

Address Translation

Implementation

- Segmentation requires special hardware
 - Segment descriptor support
 - Segment base registers (segment, code, stack)
 - Translation hardware
- Some of translation can be static
 - No dynamic offset name binding
 - Limited protection

Multics

- Old, but still state-of-the-art segmentation
- Uses *linkage segments* to support sharing
- Uses dynamic offset name binding
- Requires sophisticated memory management unit
- See pp 368-371