
Memory Management

Memory Manager
¥ Requirements

Ð Minimize primary memory access time

Ð Maximize primary memory size

Ð Primary memory must be cost-effective

¥ TodayÕs memory manager:
Ð Allocates primary memory to processes

Ð Maps process address space to primary memory

Ð Minimizes access time using cost-effective
memory configuration

Address Space vs Primary Memory

Mapped to object
other than memory

Process Address Space
Primary Memory

Building the Address Space

Source
code

Translation

Library
code

¥Compose elements

Other
objects

Building the Address Space

Source
code

Translation

Library
code

Secondary
 memory

¥Compose elements
¥Adjust addresses

¥Translation time
¥Load time

Other
objects

Process address space

Building the Address Space

Source
code

Translation

Library
code

Loader Process
address
space

Executable
 memory

Secondary
 memory

¥Compose elements
¥Adjust addresses

¥Translation time
¥Load time

¥Allocate executable
memory space

Other
objects

Memory Hierarchies
CPU Registers

Cache Memory

Primary Memory

Rotating Magnetic Memory

Optical Memory

Sequentially Accessed Memory

Executable
 Memory

Secondary
 Memory

Memory Hierarchies
CPU Registers

Cache Memory

Primary Memory

Rotating Magnetic Memory

Optical Memory

Sequentially Accessed Memory

Executable
 Memory

Secondary
 Memory

Managing the Hierarchy
¥ Move across executable-secondary memory

boundary (or lower) requires I/O operation

¥ Upward moves are copy operations
Ð Require allocation in upper memory

Ð Image exists in both memories

¥ Updates are first applied to upper memory

¥ Downward move is (usually) destructive
Ð Deallocate upper memory

Ð Updates image in secondary memory

Memory Allocation

Operating
System

Process 3

Process 0

Process 2

Process 1

Unused

In Use

Fixed-Partition Memory

Operating
System

Region 3

Region 2

Region 1

Region 0 N0

N1

N2

N3

pi

pi needs ni units

ni

Fixed-Partition Memory -- Best-Fit

Operating
System

Region 3

Region 2

Region 1

Region 0 N0

N1

N2

N3

pi

Internal
Fragmentation

¥Loader must
adjust every
address in the
absolute module
when placed in
memory

Fixed-Partition Memory -- Worst-Fit

Operating
System

Region 3

Region 2

Region 1

Region 0 N0

N1

N2

N3

pi

Fixed-Partition Memory -- First-Fit

Operating
System

Region 3

Region 2

Region 1

Region 0 N0

N1

N2

N3

pi

Fixed-Partition Memory -- Next-Fit

Operating
System

Region 3

Region 2

Region 1

Region 0 N0

N1

N2

N3

pi

Pi+1

Variable Partition Memory
Operating

System

Variable Partition Memory
Operating

System
Operating

System

Process 0

Process 1

Process 2

Process 3

Process 4

¥Loader must
adjust every
address in every
absolute module
when placed in
memory

Variable Partition Memory
Operating

System
Operating

System

Process 0

Process 1

Process 2

Process 3

Operating
System

Process 4

Process 0

Process 6

Process 2

Process 5

Process 4

¥External fragmentation

Variable Partition Memory
Operating

System
Operating

System

Process 0

Process 1

Process 2

Process 3

Operating
System

Operating
System

Process 4

Process 0

Process 6

Process 2

Process 5

Process 4

Process 0

Process 6

Process 2

Process 5
Process 4

¥Compaction moves program in memory

Cost of Moving Programs

load R1, 0x02010

3F013010

Program loaded at 0x01000

Cost of Moving Programs

load R1, 0x02010

3F013010

Program loaded at 0x01000 3F016010

Program loaded at 0x04000

¥Must run loader over program again!

Dynamic Memory Allocation
¥ Common to use dynamically allocated

memory

¥ Process wants to change the size of its
address space
Ð Smaller ⇒ Creates an external fragment

Ð Larger ⇒ Have to move/relocate the program

¥ Allocate ÒholesÓ in memory according to
Ð Best- /Worst- / First- /Next-fit

Swapping
¥ Suppose there is high demand for

executable memory

¥ Equitable policy might be to time-multiplex
processes into the memory (also space-mux)

¥ Means that process can have its address
space unloaded when it still needs memory
Ð Usually only happens when it is blocked

¥ Have same problems as dynamic memory
allocation

Dynamic Address Relocation
CPU

Relative Address

Relocation Register

+

MARload R1, 0x02010

3F012010

¥Program loaded at 0x01000 ⇒ Relocation Register = 0x01000
¥Program loaded at 0x04000 ⇒ Relocation Register = 0x04000

Runtime Bound Checking
CPU

Relative Address

Relocation Register

+

MAR

Limit Register < ∧

Interrupt

Strategies
¥ Fixed-Partition used only in batch systems

¥ Variable-Partition used everywhere (except
in virtual memory)

¥ Swapping systems
Ð Popularized in timesharing

Ð Relies on dynamic address relocation

Ð Now dated

¥ Virtual Memory
Ð Paging -- mainstream in contemporary systems

Ð Segmentation -- the future

NT Memory-mapped Files

Memory
mapped

files

Executable
 memory

Secondary
 memory

Ordinary file

¥Open the file
¥Create a section object
(that maps file)
¥Identify point in
address space to place
the file

Section
object

