
Memory Management



Memory Manager
¥ Requirements

Ð Minimize primary memory access time

Ð Maximize primary memory size

Ð Primary memory must be cost-effective

¥ TodayÕs memory manager:
Ð Allocates primary memory to processes

Ð Maps process address space to primary memory

Ð Minimizes access time using cost-effective
memory configuration



Address Space vs Primary Memory

Mapped to object
other than memory

Process Address Space
Primary Memory



Building the Address Space

Source
code

Translation

Library
code

¥Compose elements

Other
objects



Building the Address Space

Source
code

Translation

Library
code

Secondary
  memory

¥Compose elements
¥Adjust addresses

¥Translation time
¥Load time

Other
objects

Process address space



Building the Address Space

Source
code

Translation

Library
code

Loader Process
address
space

Executable
  memory

Secondary
  memory

¥Compose elements
¥Adjust addresses

¥Translation time
¥Load time

¥Allocate executable
memory space

Other
objects



Memory Hierarchies
CPU Registers

Cache Memory

Primary Memory

Rotating Magnetic Memory

Optical Memory

Sequentially Accessed Memory

Executable
  Memory

Secondary
 Memory



Memory Hierarchies
CPU Registers

Cache Memory

Primary Memory

Rotating Magnetic Memory

Optical Memory

Sequentially Accessed Memory

Executable
  Memory

Secondary
 Memory



Managing the Hierarchy
¥ Move across executable-secondary memory

boundary (or lower) requires I/O operation

¥ Upward moves are copy operations
Ð Require allocation in upper memory

Ð Image exists in both memories

¥ Updates are first applied to upper memory

¥ Downward move is (usually) destructive
Ð Deallocate upper memory

Ð Updates image in secondary memory
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Fixed-Partition Memory -- Best-Fit
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Fixed-Partition Memory -- Next-Fit
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Dynamic Memory Allocation
¥ Common to use dynamically allocated

memory

¥ Process wants to change the size of its
address space
Ð Smaller ⇒  Creates an external fragment

Ð Larger ⇒  Have to move/relocate the program

¥ Allocate ÒholesÓ in memory according to
Ð Best- /Worst- / First- /Next-fit



Swapping
¥ Suppose there is high demand for

executable memory

¥ Equitable policy might be to time-multiplex
processes into the memory (also space-mux)

¥ Means that process can have its address
space unloaded when it still needs memory
Ð Usually only happens when it is blocked

¥ Have same problems as dynamic memory
allocation
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Strategies
¥ Fixed-Partition used only in batch systems

¥ Variable-Partition used everywhere (except
in virtual memory)

¥ Swapping systems
Ð Popularized in timesharing

Ð Relies on dynamic address relocation

Ð Now dated

¥ Virtual Memory
Ð Paging -- mainstream in contemporary systems

Ð Segmentation -- the future
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