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Addressing Deadlock

¥ Prevention: Design the system so that
deadlock is impossible

¥ Avoidance: Construct a model of system
states, then choose a strategy that will not
allow the system to go to a deadlock state

¥ Detection & Recovery: Check for deadlock
(periodically or sporadically), then recover

¥ Manual intervention: Have the operator
reboot the machine if it seems too slow



A Model
¥ P = {p1, p2, É, pn} be a set of processes

¥ R = {R1, R2, É, Rm} be a set of resources

¥ cj = number of units of Rj in the system

¥ S = {S0, S1, É} be a set of states
representing the assignment of Rj to pi

Ð State changes when processes take action

Ð This allows us to identify a deadlock situation
in the operating system



State Transitions
¥ The system changes state because of the

action of some process, pi

¥ There are three pertinent actions:
Ð Request (ÒriÓ): request one or more units of a

resource

Ð Allocation (ÒaiÓ): All outstanding requests from
a process for a given resource are satisfied

Ð Deallocation (ÒdiÓ): The process releases units
of a resource

Sj Sk
xi



Properties of States
¥ Want to define deadlock in terms of patterns

of transitions

¥ Define: pi is blocked in Sj if pi cannot cause
a transition out of Sj
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Properties of States (cont)
¥ If pi is blocked in Sj, and will also be

blocked in every Sk reachable from Sj, then
pi is deadlocked

¥ Sj is called a deadlock state
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¥ One process, two units of one resource

¥ Can request one unit at a time
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Prevention

¥ Necessary conditions for deadlock
Ð Mutual exclusion

Ð Hold and wait

Ð Circular waiting

Ð No preemption

¥ Ensure that at least one of the necessary
conditions is false at all times
Ð Mutual exclusion must hold at all times



Hold and Wait

¥ Need to be sure a process does not hold one
resource while requesting another

¥ Approach 1: Force a process to request all
resources it needs at one time

¥ Approach 2: If a process needs to acquire a
new resource, it must first release all
resources it holds, then reacquire all it needs

¥ What does this say about state transition
diagrams?



Circular Wait
¥ Have a situation in which there are K

processes holding units of K resources
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P holds R

P requests R
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Circular Wait (cont)
¥ There is a cycle in the graph of processes

and resources

¥ Choose a resource request strategy by
which no cycle will be introduced

¥ Total order on all resources, then can only
ask for Rj if Ri < Rj for all Ri the process is
currently holding



Circular Wait (cont)
¥ There is a cycle in the graph of processes

and resources

¥ Choose a resource request strategy by
which no cycle will be introduced

¥ Total order on all resources, then can only
ask for Rj if Ri < Rj for all Ri the process is
currently holding

¥ Here is how we saw the easy solution for
the dining philosophers



Allowing Preemption
¥ Allow a process to time-out on a blocked

request -- withdrawing the request if it fails
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Avoidance

¥ Construct a model of system states, then
choose a strategy that will guarantees that
the system will not go to a deadlock state

¥ Requires extra information -- the maximum
claim for each process

¥ Allows resource manager to see the worst
case that could happen, then to allow
transitions based on that knowledge



Safe vs Unsafe States
¥ Safe state: one in which there is guaranteed

to be a sequence of transitions that leads
back to the initial state
Ð Even if all exercise their maximum claim, there

is an allocation strategy by which all claims can
be met

¥ Unsafe state: one in which the system
cannot guarantee there is such a sequence
Ð Unsafe state can lead to a deadlock state if too

many processes exercise their maximum claim
at once



More on Safe & Unsafe States
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More on Safe & Unsafe States

Normal
Execution

  Request
Max Claim

Execute, then
release

No
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Likely to be in a safe state

Probability of being in unsafe state increases



More on Safe & Unsafe States

Normal
Execution

  Request
Max Claim

Execute, then
release

No

Yes

¥Suppose all processes take ÒyesÓ branch
¥Avoidance strategy is to allow this to
happen, yet still be safe



More on Safe & Unsafe States

Safe States

Unsafe States

Deadlock States



BankerÕs Algorithm

¥ Let maxc[i, j] be the maximum claim for Rj

by pi

¥ Let alloc[i, j] be the number of units of Rj

held by pi

¥ Can always compute
Ð avail[j] = cj - Σ0≤i< nalloc[i,j]

Ð Then number of available units of Rj

¥ Should be able to determine if the state is
safe or not using this info



BankerÕs Algorithm

¥ Copy the alloc[i,j] table to allocÕ[i,j]

¥ Given C, maxc and allocÕ, compute avail
vector

¥ Find pi: maxc[i,j] - allocÕ[i,j] ≤ avail[j]
for 0 ≤ j < m and 0 ≤ i < n.
Ð If no such pi exists, the state is unsafe

Ð If allocÕ[i,j] is 0 for all i and j, the state is safe

¥ Set allocÕ[i,j] to 0; deallocate all resources
held by pi; go to Step 2
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Process R0 R1 R2 R3

p0 3 2 1 4
p1 0 2 5 2
p2 5 1 0 5
p3 1 5 3 0
p4 3 0 3 3

Maximum Claim

Process R0 R1 R2 R3

p0 2 0 1 1
p1 0 1 2 1
p2 4 0 0 3
p3 0 2 1 0
p4 1 0 3 0

Allocated Resources

C = <8, 5, 9, 7>
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Process R0 R1 R2 R3
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¥P4 can exercise max claim
avail[0] = avail[0]+allocÕ[4,0] = 5+1 = 6
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Example
Process R0 R1 R2 R3

p0 3 2 1 4
p1 0 2 5 2
p2 5 1 0 5
p3 1 5 3 0
p4 3 0 3 3

Maximum Claim

Process R0 R1 R2 R3

p0 2 0 1 1
p1 0 1 2 1
p2 0 0 0 0
p3 0 2 1 0
p4 0 0 0 0
Sum 2 1 4 2

Allocated Resources

C = <8, 5, 9, 7>

¥Compute total allocated
¥Determine available units

avail = <8-7, 5-3, 9-7, 7-5>
         = <6, 2, 5, 5>

¥Can anyoneÕs maxc be met?
(Yes, any of them can)



Detection & Recovery
¥ Check for deadlock (periodically or

sporadically), then recover

¥ Can be far more aggressive with allocation

¥ No maximum claim, no safe/unsafe states

¥ Differentiate between
Ð Serially reusable resources: A unit must be

allocated before being released

Ð Consumable resources: Never release acquired
resources; resource count is number currently
available



Reusable Resource Graphs
(RRGs)

¥ Micro model to describe a single state
¥ Nodes = {p0, p1, É, pn} ∪  {R1, R2, É, Rm}

¥ Edges connect pi to Rj, or Rj to pi

Ð (pi, Rj) is a request edge for one unit of Rj

Ð (Rj, pi) is an assignment edge of one unit of Rj

¥ For each Rj there is a count, cj of units Rj

¥ Number of units of Rj allocated to pi plus
the number requested by pi cannot exceed cj



Example
P holds one unit of R

A Deadlock State

P requests one unit of R
R

R

p

p



Example

Not a Deadlock State No Cycle in the Graph



State Transitions due to Request
¥ In Sj, pi is allowed to request q≤ch units of

Rh, provided pi has no outstanding requests.
¥ Sj → Sk, where the RRG for Sk is derived

from Sj by adding q request edges from pi to
Rh

Rhpi Rhpi

State Sj
State Sk

pi request q units
of Rh

q edges



State Transition for Acquire
¥ In Sj, pi is allowed to acquire units of Rh, iff

there is (pi, Rh) in the graph, and all can be
satisfied.

¥ Sj → Sk, where the RRG for Sk is derived
from Sj by changing each request edge to an
assignment edge.

Rhpi Rhpi

State Sj
State Sk

pi acquires units
of Rh



State Transition for Release
¥ In Sj, pi is allowed to release units of Rh, iff

there is (Rh, pi) in the graph, and there is no
request edge from pi.

¥ Sj → Sk, where the RRG for Sk is derived
from Sj by deleting all assignment edges.

Rhpi Rhpi

State Sj
State Sk

pi releases units
of Rh
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Graph Reduction
¥ Deadlock state if there is no sequence of

transitions unblocking every process

¥ A RRG represents a state; can analyze the
RRG to determine if there is a sequence

¥ A graph reduction represents the (optimal)
action of an unblocked process.  Can reduce
by pi if
Ð pi is not blocked

Ð pi has no request edges, and there are (Rj, pi) in
the RRG



Graph Reduction (cont)
¥ Transforms RRG to another RRG with all

assignment edges into pi removed

¥ Represents pi releasing the resources it
holds

pi

pi

Reducing by pi



Graph Reduction (cont)

¥ A RRG is completely reducible if there a
sequence of reductions that leads to a RRG
with no edges

¥ A state is a deadlock state if and only if the
RRG is not completely reducible.
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Example RRG
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Consumable Resource Graphs
(CRGs)

¥ Number of units varies, have
producers/consumers

¥ Nodes = {p0, p1, É, pn} ∪  {R1, R2, É, Rm}

¥ Edges connect pi to Rj, or Rj to pi

Ð (pi, Rj) is a request edge for one unit of Rj

Ð (Rj, pi) is an producer edge (must have at least
one producer for each Rj)

¥ For each Rj there is a count, wj of units Rj



State Transitions due to Request
¥ In Sj, pi is allowed to request any number of

units of Rh, provided pi has no outstanding
requests.

¥ Sj → Sk, where the RRG for Sk is derived
from Sj by adding q request edges from pi to
Rh

Rhpi Rhpi

State Sj
State Sk

pi request q units
of Rh

q edges



State Transition for Acquire
¥ In Sj, pi is allowed to acquire units of Rh, iff

there is (pi, Rh) in the graph, and all can be
satisfied.

¥ Sj → Sk, where the RRG for Sk is derived
from Sj by deleting each request edge and
decrementing wh.

Rhpi Rhpi

State Sj
State Sk

pi acquires units
of Rh



State Transition for Release
¥ In Sj, pi is allowed to release units of Rh, iff

there is (Rh, pi) in the graph, and there is no
request edge from pi.

¥ Sj → Sk, where the RRG for Sk is derived
from Sj by incrementing wh.

Rhpi Rhpi

State Sj
State Sk

pi releases 2 units
of Rh
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Deadlock Detection
¥ May have a CRG that is not completely

reducible, but it is not a deadlock state

¥ For each process:
Ð Find at least one sequence which leaves each

process unblocked.

¥ There may be different sequences for
different processes -- not necessarily an
efficient approach



Deadlock Detection
¥ May have a CRG that is not completely

reducible, but it is not a deadlock state

¥ Only need to find sequences, which leave
each process unblocked.

p0

p1



Deadlock Detection
¥ May have a CRG that is not completely

reducible, but it is not a deadlock state

¥ Only need to find a set of sequences, which
leaves each process unblocked.



General Resource Graphs

¥ Have consumable and reusable resources

¥ Apply consumable reductions to
consumables, and reusable reductions to
reusables

¥ See Figure 10.29



GRG Example (Fig 10.29)
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GRG Example (Fig 10.29)
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Recovery

¥ No magic here
Ð Choose a blocked resource

Ð Preempt it (releasing its resources)

Ð Run the detection algorithm

Ð Iterate if until the state is not a deadlock state


