Deadlock

Addressing Deadlock

- Prevention: Design the system so that deadlock is impossible
- Avoidance: Construct a model of system states, then choose a strategy that will not allow the system to go to a deadlock state
- Detection & Recovery: Check for deadlock (periodically or sporadically), then recover
- Manual intervention: Have the operator reboot the machine if it seems too slow

A Model

- $P = \{p_1, p_2, \dots, p_n\}$ be a set of processes
- $R = \{R_1, R_2, ..., R_m\}$ be a set of resources
- $c_j =$ number of units of R_j in the system
- $S = {S_0, S_1, ...}$ be a set of states representing the assignment of R_i to p_i
 - State changes when processes take action
 - This allows us to identify a deadlock situation in the operating system

State Transitions

- The system changes state because of the action of some process, p_i
- There are three pertinent actions:
 - Request ("r_i"): request one or more units of a resource
 - Allocation ("a_i"): All outstanding requests from a process for a given resource are satisfied
 - Deallocation ("d_i"): The process releases units of a resource

$$S_j \xrightarrow{X_i} S_k$$

Properties of States

- Want to define deadlock in terms of patterns of transitions
- Define: p_i is <u>blocked</u> in S_j if p_i cannot cause a transition out of S_j

Properties of States

- Want to define deadlock in terms of patterns of transitions
- Define: p_i is <u>blocked</u> in S_j if p_i cannot cause a transition out of S_i

Properties of States (cont)

- If p_i is blocked in S_j, and will also be blocked in every S_k reachable from S_j, then p_i is deadlocked
- S_j is called a <u>deadlock state</u>

- One process, two units of one resource
- Can request one unit at a time

Prevention

- <u>Necessary</u> conditions for deadlock
 - Mutual exclusion
 - Hold and wait
 - Circular waiting
 - No preemption
- Ensure that at least one of the necessary conditions is false at all times
 - Mutual exclusion must hold at all times

Hold and Wait

- Need to be sure a process does not hold one resource while requesting another
- <u>Approach 1</u>: Force a process to request all resources it needs at one time
- <u>Approach 2</u>: If a process needs to acquire a new resource, it must first release all resources it holds, then reacquire all it needs
- What does this say about state transition diagrams?

Circular Wait

• Have a situation in which there are K processes holding units of K resources

P holds R

P requests R

Circular Wait (cont)

- There is a cycle in the graph of processes and resources
- Choose a resource request strategy by which no cycle will be introduced
- <u>Total order</u> on all resources, then can only ask for R_j if $R_i < R_j$ for all R_i the process is currently holding

Circular Wait (cont)

- There is a cycle in the graph of processes and resources
- Choose a resource request strategy by which no cycle will be introduced
- <u>Total order</u> on all resources, then can only ask for R_j if $R_i < R_j$ for all R_i the process is currently holding
- Here is how we saw the easy solution for the dining philosophers

Allowing Preemption

• Allow a process to time-out on a blocked request -- withdrawing the request if it fails

Avoidance

- Construct a model of system states, then choose a strategy that will guarantees that the system will not go to a deadlock state
- Requires extra information -- the *maximum claim* for each process
- Allows resource manager to see the worst case that could happen, then to allow transitions based on that knowledge

Safe vs Unsafe States

- <u>Safe state</u>: one in which there is guaranteed to be a sequence of transitions that leads back to the initial state
 - Even if all exercise their maximum claim, there is an allocation strategy by which all claims can be met
- <u>Unsafe state</u>: one in which the system cannot guarantee there is such a sequence
 - Unsafe state <u>can</u> lead to a deadlock state if too many processes exercise their maximum claim at once

Probability of being in unsafe state increases

Suppose all processes take "yes" branch
Avoidance strategy is to allow this to happen, yet still be safe

Banker's Algorithm

- Let maxc[i, j] be the maximum claim for $R_{j} \ by \ p_{i}$
- Let alloc[i, j] be the number of units of R_j held by p_i
- Can always compute
 - $\operatorname{avail}[j] = c_j \Sigma_{0 \le i < n} \operatorname{alloc}[i,j]$
 - Then number of available units of R_i
- Should be able to determine if the state is safe or not using this info

Banker's Algorithm

- Copy the alloc[i,j] table to alloc'[i,j]
- Given C, maxc and alloc', compute avail vector
- Find p_i : maxc[i,j] alloc'[i,j] \leq avail[j] for $0 \leq j \leq m$ and $0 \leq i \leq n$.

- If no such p_i exists, the state is unsafe

- If alloc'[i,j] is 0 for all i and j, the state is safe
- Set alloc'[i,j] to 0; deallocate all resources held by p_i; go to Step 2

Maxin	num (
Process	R_0	R_1	R_2	R_3
\mathbf{p}_0	3	2	1	4
p ₁	0	2	5	2
p ₂	5	1	0	5
p ₃	1	5	3	0
p ₄	3	0	3	3

Allocated Resources

Process	R_0	R_1	R_2	R ₃
\mathbf{p}_0	2	0	1	1
\mathbf{p}_1	0	1	2	1
p ₂	4	0	0	3
p ₃	0	2	1	0
p_4	1	0	3	0

 R_3

4

2 5

0

3

Maximum Claim					
Process	R ₀	R_1	R_2		
\mathbf{p}_0	3	2	1		
p_1	0	2	5		
p ₂	5	1	0		
p ₃	1	5	3		
p_4	3	0	3		

•Compute total allocated

C = <8, 5, 9, 7>

Allocated Resources

Process	R_0	R_1	R_2	R_3
\mathbf{p}_0	2	0	1	1
\mathbf{p}_1	0	1	2	1
p ₂	4	0	0	3
p ₃	0	2	1	0
p_4	1	0	3	0
Sum	7	3	7	5

Maxim	num	Claim	E	lxa
Process	R ₀	R_1	R_2	R ₃
\mathbf{p}_0	3	2	1	4
\mathbf{p}_1	0	2	5	2
p_2	5	1	0	5
p ₃	1	5	3	0
p_4	3	0	3	3

C = <8, 5, 9, 7>

Compute total allocated
Determine available units avail = <8-7, 5-3, 9-7, 7-5> = <1, 2, 2, 2>

Allocated Resources

Process	R_0	R_1	R_2	R_3
\mathbf{p}_0	2	0	1	1
\mathbf{p}_1	0	1	2	1
p ₂	4	0	0	3
p_3	0	2	1	0
p_4	1	0	3	0
Sum	7	3	7	5

			E	Xa
Maxim	num	Claim		
Process	R_0	R_1	R_2	R_3
\mathbf{p}_0	3	2	1	4
\mathbf{p}_1	0	2	5	2
\mathbf{p}_2	5	1	0	5
p ₃	1	5	3	0
p_4	3	0	3	3

Process	R_0	R_1	R_2	R_3
\mathbf{p}_0	2	0	1	1
p ₁	0	1	2	1
p ₂	4	0	0	3
p ₃	0	2	1	0
p ₄	1	0	3	0
Sum	7	3	7	5

Example

C = <8, 5, 9, 7>

Compute total allocatedDetermine available units

avail = <8-7, 5-3, 9-7, 7-5> = <1, 2, 2, 2>

•Can anyone's maxc be met?

 $maxc[2,0]-alloc'[2,0] = 5-4 = 1 \le 1 = avail[0]$ $maxc[2,1]-alloc'[2,1] = 1-0 = 1 \le 2 = avail[1]$ $maxc[2,2]-alloc'[2,2] = 0-0 = 0 \le 2 = avail[2]$ $maxc[2,3]-alloc'[2,3] = 5-3 = 2 \le 2 = avail[3]$

Maxim	num (Claim	E	
Process	R ₀	R_1	R_2	R_3
\mathbf{p}_0	3	2	1	4
\mathbf{p}_1	0	2	5	2
p ₂	5	1	0	5
p_3	1	5	3	0
p_4	3	0	3	3

Process	R ₀	R_1	R_2	R_3
\mathbf{p}_0	2	0	1	1
p ₁	0	1	2	1
p ₂	4	0	0	3
p ₃	0	2	1	0
p_4	1	0	3	0
Sum	7	3	7	5

Example

C = <8, 5, 9, 7>

Compute total allocatedDetermine available units

avail = <8-7, 5-3, 9-7, 7-5> = <1, 2, 2, 2>

•Can anyone's maxc be met?

 $maxc[2,0]-alloc'[2,0] = 5-4 = 1 \le 1 = avail[0]$ $maxc[2,1]-alloc'[2,1] = 1-0 = 1 \le 2 = avail[1]$ $maxc[2,2]-alloc'[2,2] = 0-0 = 0 \le 2 = avail[2]$ $maxc[2,3]-alloc'[2,3] = 5-3 = 2 \le 2 = avail[3]$

$\bullet P_2$ can exercise max claim

avail[0] = avail[0]+alloc'[2,0] = 1+4 = 5 avail[1] = avail[1]+alloc'[2,1] = 2+0 = 2 avail[2] = avail[2]+alloc'[2,2] = 2+0 = 2 avail[3] = avail[3]+alloc'[2,3] = 2+3 = 5

			E	Xa
Maxim	num	<u>Claim</u>		
Process	R_0	R_1	R_2	R_3
\mathbf{p}_0	3	2	1	4
\mathbf{p}_1	0	2	5	2
p ₂	5	1	0	5
p ₃	1	5	3	0
p ₄	3	0	3	3

Process	R ₀	R_1	R_2	R_3
\mathbf{p}_0	2	0	1	1
p ₁	0	1	2	1
p ₂	0	0	0	0
p ₃	0	2	1	0
p_4	1	0	3	0
Sum	3	3	7	2

Example

C = <8, 5, 9, 7>

Compute total allocatedDetermine available units

avail = <8-3, 5-3, 9-7, 7-2> = <5, 2, 2, 5>

•Can anyone's maxc be met?

 $maxc[4,0]-alloc'[4,0] = 5-1 = 4 \le 5 = avail[0]$ $maxc[4,1]-alloc'[4,1] = 0-0 = 0 \le 2 = avail[1]$ $maxc[4,2]-alloc'[4,2] = 3-3 = 0 \le 2 = avail[2]$ $maxc[4,3]-alloc'[4,3] = 3-0 = 3 \le 5 = avail[3]$

Maxim	num	Claim	E	
Process	R ₀	R_1	R_2	R_3
\mathbf{p}_0	3	2	1	4
p ₁	0	2	5	2
p ₂	5	1	0	5
p_3	1	5	3	0
p_4	3	0	3	3

R ₀	R_1	R_2	R_3
2	0	1	1
0	1	2	1
0	0	0	0
0	2	1	0
1	0	3	0
3	3	7	2
	R ₀ 2 0 0 0 1 3	R0R1200100021033	$\begin{array}{ccccccc} R_0 & R_1 & R_2 \\ 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \\ 3 & 3 & 7 \end{array}$

Example

C = <8, 5, 9, 7>

Compute total allocatedDetermine available units

•Can anyone's maxc be met?

 $maxc[4,0]-alloc'[4,0] = 5-1 = 4 \le 5 = avail[0]$ $maxc[4,1]-alloc'[4,1] = 0-0 = 0 \le 2 = avail[1]$ $maxc[4,2]-alloc'[4,2] = 3-3 = 0 \le 2 = avail[2]$ $maxc[4,3]-alloc'[4,3] = 3-0 = 3 \le 5 = avail[3]$

•P₄ can exercise max claim

avail[0] = avail[0]+alloc'[4,0] = 5+1 = 6 avail[1] = avail[1]+alloc'[4,1] = 2+0 = 2 avail[2] = avail[2]+alloc'[4,2] = 2+3 = 5 avail[3] = avail[3]+alloc'[4,3] = 5+0 = 5

Maxin	111m (laim	E	xa
Process	R ₀	R_1	R_2	R_3
\mathbf{p}_0	3	2	1	4
p ₁	0	2	5	2
p ₂	5	1	0	5
p_3	1	5	3	0
p_4	3	0	3	3

Process	R_0	\mathbf{R}_1	R_2	R_3
\mathbf{p}_0	2	0	1	1
p ₁	0	1	2	1
p ₂	0	0	0	0
p ₃	0	2	1	0
p ₄	0	0	0	0
Sum	2	1	4	2

Example

C = <8, 5, 9, 7>

Compute total allocatedDetermine available units

avail = <8-7, 5-3, 9-7, 7-5> = <6, 2, 5, 5>

•Can anyone's maxc be met? (Yes, any of them can)

Detection & Recovery

- Check for deadlock (periodically or sporadically), then recover
- Can be far more aggressive with allocation
- No maximum claim, no safe/unsafe states
- Differentiate between
 - Serially reusable resources: A unit must be allocated before being released
 - Consumable resources: Never release acquired resources; resource count is number currently available

Reusable Resource Graphs (RRGs)

- Micro model to describe a single state
- Nodes = { $p_0, p_1, ..., p_n$ } \cup { $R_1, R_2, ..., R_m$ }
- Edges connect p_i to R_j, or R_j to p_i
 (p_i, R_j) is a request edge for one unit of R_j
 (R_j, p_i) is an assignment edge of one unit of R_j
- For each R_j there is a count, c_j of units R_j
- Number of units of R_j allocated to p_i plus the number requested by p_i cannot exceed c_i

Not a Deadlock State

No Cycle in the Graph

State Transitions due to Request

- In S_j, p_i is allowed to request $q \le c_h$ units of R_h, provided p_i has no outstanding requests.
- $S_j \rightarrow S_k$, where the RRG for S_k is derived from S_j by adding q request edges from p_i to R_h

State Transition for Acquire

- In S_j, p_i is allowed to acquire units of R_h, iff there is (p_i, R_h) in the graph, and all can be satisfied.
- $S_j \rightarrow S_k$, where the RRG for S_k is derived from S_j by changing each request edge to an assignment edge.

State Transition for Release

- In S_j, p_i is allowed to release units of R_h, iff there is (R_h, p_i) in the graph, and there is no request edge from p_i.
- $S_j \rightarrow S_k$, where the RRG for S_k is derived from S_j by deleting all assignment edges.

 \mathbf{S}_{00}

Graph Reduction

- Deadlock state if there is no sequence of transitions unblocking every process
- A RRG represents a state; can analyze the RRG to determine if there is a sequence
- A graph reduction represents the (optimal) action of an unblocked process. Can reduce by p_i if
 - p_i is not blocked
 - p_i has no request edges, and there are (R_j, p_i) in the RRG

Graph Reduction (cont)

- Transforms RRG to another RRG with all assignment edges into p_i removed
- Represents p_i releasing the resources it holds

Graph Reduction (cont)

- A RRG is completely reducible if there a sequence of reductions that leads to a RRG with no edges
- A state is a deadlock state if and only if the RRG is not completely reducible.

Example RRG

Example RRG

Consumable Resource Graphs (CRGs)

- Number of units varies, have producers/consumers
- Nodes = { $p_0, p_1, ..., p_n$ } \cup { $R_1, R_2, ..., R_m$ }
- Edges connect p_i to R_j, or R_j to p_i
 - $-(p_i, R_j)$ is a request edge for one unit of R_j
 - $-(R_j, p_i)$ is an producer edge (must have at least one producer for each R_j)
- For each R_j there is a count, w_j of units R_j

State Transitions due to Request

- In S_j , p_i is allowed to request any number of units of R_h , provided p_i has no outstanding requests.
- $S_j \rightarrow S_k$, where the RRG for S_k is derived from Sj by adding q request edges from p_i to R_h q edges

State Transition for Acquire

- In S_j, p_i is allowed to acquire units of R_h, iff there is (p_i, R_h) in the graph, and all can be satisfied.
- $S_j \rightarrow S_k$, where the RRG for S_k is derived from Sj by deleting each request edge and decrementing w_h .

State Transition for Release

- In S_j, p_i is allowed to release units of R_h, iff there is (R_h, p_i) in the graph, and there is no request edge from p_i.
- $S_j \rightarrow S_k$, where the RRG for S_k is derived from S_j by incrementing w_h .

Deadlock Detection

- May have a CRG that is not completely reducible, but it is not a deadlock state
- For each process:
 - Find at least one sequence which leaves each process unblocked.
- There may be *different* sequences for different processes -- not necessarily an efficient approach

Deadlock Detection

- May have a CRG that is not completely reducible, but it is not a deadlock state
- Only need to find sequences, which leave each process unblocked.

Deadlock Detection

- May have a CRG that is not completely reducible, but it is not a deadlock state
- Only need to find a set of sequences, which leaves each process unblocked.

General Resource Graphs

- Have consumable and reusable resources
- Apply consumable reductions to consumables, and reusable reductions to reusables
- See Figure 10.29

GRG Example (Fig 10.29)

← Not in Fig 10.29

GRG Example (Fig 10.29)

GRG Example (Fig 10.29)

Recovery

- No magic here
 - Choose a blocked resource
 - Preempt it (releasing its resources)
 - Run the detection algorithm
 - Iterate if until the state is not a deadlock state