
CSci 3753: Systems

Gary Nutt

Department of Computer Science

University of Colorado

General Information
¥ Focus is on operating systems

Ð Complies with ACM & IEEE courses

Ð Prerequisites: CSci 2270 & ECEN 2220

¥ Recitations will have new material in them

¥ Do your work in the NT Lab -- ECCS 123

¥ No late homework!

¥ OK to discuss assignments, but:
Ð Must develop your own code

Ð Cannot look at otherÕs code

Ð Cannot use code in a book

General Information (cont)

¥ Course grade
Ð There will be about ~9 programming assignments

Ð (Assign #1 is due September 1)

Ð Midterm (15%) -- Tentatively on October 20

Ð Final (25%) -- Dec 15@7:30 am

¥ Office hours: M & T, 3:30-5:00 -- ECOT 521

¥ Get all information from web page
http://www.cs.colorado.edu/~nutt/CS3753/base.html

Introduction

Why Study OS?

¥ Understand model of operation
Ð Easier to see how to use the system

Ð Enables you to write efficient code

¥ Learn to design an OS

¥ Even so, OS is pure overhead of real work

¥ Application programs have the real value to
person who buys the computer

System Software

¥ Independent of applications, but common to
all

¥ Examples
Ð C library functions

Ð A window system

Ð A database management system

Ð Resource management functions

Purpose of an OS
(What is Resource Management?)
¥ Process: An executing program

¥ Resource: Anything that is needed for a
process to run
Ð Memory

Ð Space on a disk

Ð The CPU

¥ ÒAn OS creates resource abstractionsÓ

¥ ÒAn OS manages resource sharingÓ

Resource Abstraction
load(block, length, device);
seek(device, 236);
out(device, 9)

Resource Abstraction
load(block, length, device);
seek(device, 236);
out(device, 9)

write(char *block, int len, int device,
int track, int sector) {

 ...
 load(block, length, device);
 seek(device, 236);
 out(device, 9);
 ...
}

Resource Abstraction
load(block, length, device);
seek(device, 236);
out(device, 9)

write(char *block, int len, int device,
int track, int sector) {

 ...
 load(block, length, device);
 seek(device, 236);
 out(device, 9);
 ...
}

write(char *block, int len, int device,int addr);

Resource Abstraction
load(block, length, device);
seek(device, 236);
out(device, 9)

write(char *block, int len, int device,
int track, int sector) {

 ...
 load(block, length, device);
 seek(device, 236);
 out(device, 9);
 ...
}

write(char *block, int len, int device,int addr);

fprintf(fileID, Ò%dÓ, datum);

Abstract Resources

Hardware Resources

OS

OS Resources (OS Interface)

Middleware

Abstract Resources (API)

Application

User Interface

Resource Sharing

¥ Space- vs time-multiplexed sharing

¥ To control sharing, must be able to isolate
resources

¥ OS usually provides mechanism to isolate,
then selectively allows sharing
Ð How to isolate resources

Ð How to be sure that sharing is acceptable

¥ Concurrency

Multiprogramming
¥ Technique for sharing the CPU among

runnable processes
Ð Process may be blocked on I/O

Ð Process may be blocked waiting for other
resource

¥ While one process is blocked, another
should be able to run

¥ Multiprogramming OS accomplishes CPU
sharing ÒautomaticallyÓ

¥ Reduced time to run all processes

How Multiprogramming Works

Process 1

Process 2

Process 3

Process 4

Space-multiplexed Memory

Time-multiplexed CPU

OS Strategies

¥ Batch processing

¥ Timesharing

¥ Personal computer & workstations

¥ Process control & real-time

¥ Network

¥ Distributed

Batch Processing

¥ Uses multiprogramming

¥ Job (file of OS commands) prepared offline

¥ Batch of jobs given to OS at one time

¥ OS processes jobs one-after-the-other

¥ No human-computer interaction

¥ OS optimizes resource utilization

¥ Batch processing (as an option) still used
today

Timesharing
¥ Uses multiprogramming

¥ Support interactive computing model
(Illusion of multiple consoles)

¥ Different scheduling & memory allocation
strategies than batch

¥ Tends to propagate processes

¥ Considerable attention to resource isolation
(security & protection)

¥ Tend to optimize response time

Personal Computers

¥ CPU sharing among one personÕs processes

¥ Power of computing for personal tasks
Ð Graphics

Ð Multimedia

¥ Trend toward very small OS

¥ OS focus on resource abstraction

¥ Rapidly evolved to Òpersonal multitaskingÓ
systems

Process Control & Real-Time

¥ Computer is dedicated to a single purpose

¥ Classic embedded system

¥ Must respond to external stimuli in fixed
time

¥ Continuous media popularizing real-time
techniques

¥ An area of growing interest

Networks

¥ LAN (Local Area Network) evolution

¥ 3Mbps (1975) -> 10 Mbps (1980)->100
Mbps (1990)

¥ High speed communication means new way
to do computing
Ð Shared files

Ð Shared memory

Ð ???

Distributed OS

¥ Wave of the future

Distributed OS

App App

App

App

App
App

Multiple Computers connected by a Network

Evolution of Modern OS

Modern OS

Batch

Timesharing

PC & Wkstation

Network OS

Real-Time
Memory Mgmt

Protection
Scheduling

Files
Devices

Memory Mgmt

Protection
Scheduling

System software

Human-Computer
 Interface

Client-Server Model

Protocols

Scheduling

Examples of Modern OS
¥ UNIX variants -- have evolved since 1970

¥ Windows NT -- has evolved since 1989
(much more modern than UNIX)

¥ Research OS -- still evolving É

¥ Book uses Linux as main example

¥ This course will use Windows NT as the
main example
Ð Lab exercises will use NT

Ð Supplementary materials will be made available

Microsoft Windows NT

¥ Heavily window-oriented

¥ Foundation behavior is windows-
independent
Ð We will focus on the foundation
Ð Use only the ÒMS-DOS promptÓ -- cmd.exe

OS API

NT Kernel

NT User Interface
and Graphics

NT Executive

Windows NT (cont)
¥ OS API has text orientation (like UNIX)

¥ Object-oriented implementation

¥ Heavy use of threads

¥ Broad spectrum of synchronization tools

¥ Modern I/O system

