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Lebegőpontos számok
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Lebegőpontos számok

1. feladat.

Legyen a = 2, t = 4, k− = −5, k+ = 5.

(a) Írja fel a következő számok lebegőpontos alakját.

30, 26, 0.875, 0.5625, 1.625, 2.75

(b) Hány pozit́ıv normalizált lebegőpontos szám ábrázolható ilyen
jellemzők mellett?

(c) Mi lesz a legnagyobb ábrázolható szám és a legkisebb pozit́ıv
normalizált lebegőpontos szám?

(d) Mi lesz az alábbi számokhoz rendelt lebegőpontos szám szabályos
kereḱıtés, illetve levágás esetén?

0.1, 0.4, 0.3,
1

3
, 0.7,

1

32
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2. feladat

(a) Ábrázolja számegyenesen az a = 2, t = 4, k− = −3, k+ = 2 jellemzők
mellett feĺırható összes pozit́ıv normalizált lebegőpontos számot.

(b) A fenti számábrázolási jellemzők mellett mennyi lesz M∞, ε0 és ε1

értéke?

(c) Ezen jellemzők mellett mondjon példát olyan x , y > 0 lebegőpontos
számokra, melyekre x + y < M∞ teljesül, de x + y nem lebegőpontos
szám.

(d) Mondjon példát olyan x , y > 0, x 6= y lebegőpontos számokra,
melyekre fl(x − y) = 0 teljesül.

(e) Mondjon példát olyan x , y > 0 lebegőpontos számokra, melyekre
fl(x + y) = x teljesül.
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Octave/Matlab bevezető

Részletes dokumentáció:

Octave:
https://www.gnu.org/software/octave/

Matlab:
https://www.mathworks.com/help/matlab/
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A parancsablakba utaśıtásokat gépelhetünk, pl:

>> 3+4

ans =

7

>> 3*1.5

ans =

4.5000

>> cos(0)

ans =

1

Ha másképp nem rendelkezünk, akkor az eredmény az ans nevű változóba
kerül.
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Használhatunk más változókat is, pl.:

>> a=3+4

a =

7

>> a=3; b=4; c=a+b

c =

7

Ha egy értékadó utaśıtást pontosvesszővel zárunk le, akkor az
értékadás végrehajtódik, de az eredmény nem jelenik meg a
parancsablakban. Pl.:

>> a=3; b=4; c=a+b;

A változó értékét ekkor is megkérdezhetjük, nevének begépelésével:

>> c

c =

7
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Változónevek

Betűvel vagy aláhúzással (Octave), illetve betűvel (Matlab) kell
kezdődniük, tartalmazhatnak betűket, számokat, aláhúzást.
Megkülönbözteti a kis- és nagybetűket. Ne használjunk ékezetes
betűket!

Nem lehetnek változónevek az Octave/Matlab kulcsszavai (pl. if,
end, stb), az iskeyword utaśıtással felsoroltathatjuk ezeket a
kulcsszavakat.

Figyeljünk rá, hogy ne használjuk változónévként függvények neveit
(pl. cos, size, stb). Ha nem vagyunk biztosak benne, hogy egy név
létezik-e már, akkor az exist függvénnyel ellenőrizhetjük (pl. exist

cos)

A clear utaśıtással törölhetünk változókat (pl. clear a,b törli az a

és b változókat). A clear all utaśıtással minden változó törlődik.
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Összehasonĺıtó operátorok

Értékük 1 (igaz), vagy 0 (hamis).

a<b Igaz, ha a kisebb, mint b

a<=b Igaz, ha a nem nagyobb, mint b

a>b Igaz, ha a nagyobb, mint b

a>=b Igaz, ha a nem kisebb, mint b

a==b Igaz, ha a egyenlő b-vel

a∼=b Igaz, ha a nem egyenlő b-vel

a!=b (Csak Octave-ban!) Igaz, ha a nem egyenlő b-vel

Ha a és b azonos méretű mátrixok, akkor az összehasonĺıtás elemenként
történik (és a visszaadott érték egy logikai tömb)

Baran Ágnes Numerikus matematika Labor 10 / 212



m-fájlok
Az Octave/Matlab futtatható állományai az m-fájlok.

Nyissunk meg a szerkesztőablakban egy új fájlt.

Írjuk ide a programunkat

A megjegyzéseinket
I Octave-ban % vagy # jel mögött,
I Matlab-ban % jel mögött

helyezhetjük el.

Több sorból álló blokkot a %{ és %} jelek közé helyezve tehetünk
megjegyzésbe.

Itt is figyeljünk a sorvégi pontosvesszőkre, ha egy értékadó utaśıtás
végén lemarad, akkor annak eredménye futás közben megjelenik a
parancsablakban.

Mentsük el a fájlt.

Futtassuk a programunkat.
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for-ciklus

for ciklusvaltozo=vektor
utasitasok

end

Példák

s=0;

for i=1:100

s=s+i;

end

a=[4 2 -1 5];

s=0;

for i=a

s=s+1/i;

end

s=100;

for i=98:-2:2

s=s+i;

end
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while-ciklus

while logikai kifejezés
utasitasok

end

Példa

k=10;

F=1;

while k>1

F=F*k;

k=k-1;

end
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3. feladat

(a) Vizsgálja meg száḿıtógépén a 0.4− 0.5 + 0.1 == 0 logikai kifejezés
értékét! Magyarázza meg a tapasztalt jelenséget! Mi lesz a
0.1− 0.5 + 0.4 == 0 logikai kifejezés értéke?

(b) Mit tapasztal, ha az alábbi kódokat lefuttatja?

a=0;

for i=1:5

a=a+0.2;

end

a==1

a=1;

for i=1:5

a=a-0.2;

end

a==0
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4. feladat

(a) Írjon egy kódot a gépi epszilon meghatározására.

(b) Olvassa el az Octave/Matlab eps függvényének help-jét. Nézze meg
az eps (azaz az eps(1) ) értékét.

5. feladat

Vizsgálja meg száḿıtógépén a 266 + 1 == 266, 266 + 10 == 266,
266 + 100 == 266, 266 + 1000 == 266 és 266 + 10000 == 266 logikai
kifejezések értékét! Keresse meg azt a legkisebb n > 0 számot, melyre a
266 + n == 266 logikai kifejezés értéke hamis. Mennyi az eps(2ˆ66)
értéke?
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6. feladat

(a) Az alábbi algoritmus végrehajtása után mennyi az x elméleti, illetve a
gépi száḿıtás után adódó értéke?

x=1/3;

for i=1:40

x=4*x-1;

end

(b) Az alábbi algoritmus elméletileg minden x ≥ 0 esetén az x eredeti
értékét adja vissza. Vizsgálja meg mi történik a gyakorlatban, ha az
algoritmust x = 1000, x = 100 kezdőértékkel futtatja! Mi az oka a
tapasztalt jelenségnek?

for i=1:60

x=sqrt(x);

end

for i=1:60

x=x^2;

end
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7. feladat

Legyen x = (10200, 1). Száḿıtsa ki gépén az x vektor normáját az alábbi
két (matematikailag ekvivalens) módon. Magyarázza meg a tapasztalt
jelenséget!

(a)

‖x‖ =
√

x2
1 + x2

2

(b)

c = max{|x1|, |x2|}, ‖x‖ = c ·
√(x1

c

)2
+
(x2

c

)2

8. feladat

Írassa ki a realmax és realmin értékét. Vizsgálja meg a
realmin(’single’) és realmax(’single’) értékeket is.
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Octave/Matlab alapok 1.
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Vektorok Octave/Matlab-ban

Megkülönbözteti a sor- és oszlopvektorokat

Sorvektorok

Az a = (−1.2, 3.1, 4.7, 1.9) vektor megadása elemei felsorolásával:

az elemeket vesszővel választjuk el:

a =[-1.2, 3.1, 4.7, 1.9]

vagy az elemeket szóközzel választjuk el:

a=[-1.2 3.1 4.7 1.9]

A vektorkoordináták számozása 1-gyel kezdődik, a(i) az a vektor i-edik
koordinátája.

length(a) az a vektor koordinátáinak száma

a=[] üres vektor
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Vektorok, mint szabályos sorozatok
A kettőspont operátorral

a b = (1, 2, 3, 4, 5) vektor:

b = 1:5

a c = (5, 4, 3, 2, 1) vektor:

c = 5:-1:1

a d = (2, 2.2, 2.4, 2.6, 2.8, 3) vektor

d=2:0.2:3

Általában:

x=elsoelem:lepeskoz:utolsoelem

ahol a lépésköz negat́ıv is lehet, vagy

x=elsoelem:utolsoelem

ekkor a lépésköz 1.
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Vektorok, mint szabályos sorozatok

A linspace függvénnyel:

az e = (1, 1.2, 1.4, 1.6, 1.8, 2) vektor

e=linspace(1,2,6)

egy 100 koordinátából álló f vektor

f=linspace(1,2)

Általában:

x=linspace(elsoelem,utolsoelem,elemekszama)

ahol a koordináták egyforma lépésközzel követik egymást, vagy

x=linspace(elsoelem,utolsoelem)

ekkor a koordináták száma 100.
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Oszlopvektorok

Oszlopvektorok megadása

elemeinek felsorolásával (a vektor koordinátáit pontosvesszővel
választjuk el)

m=[-3;0;7]

egy sorvektor transzponálásával: n=[1 -2 4 -1]’

(valójában a ’ jel konjugált transzponáltat eredményez, a
konjugálás nélküli transzponálás: a.’ vagy transpose(a))

x(i) és length(x) az x vektor i-edik koordinátája és az x vektor
koordinátáinak száma (ugyanúgy mint a sorvektoroknál)

size(x) az x vektor mérete (sorvektoroknál az [1 length(x)] vektor,
oszlopvektoroknál a [length(x) 1] vektor)
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Vektorok konstruálása más vektorokból

[a b] két sorvektor egymás után fűzése

[m;n] két oszlopvektor egymás után fűzése

[-4 a 3 -1] sorvektor bőv́ıtése újabb elemekkel

[1;m;-3] oszlopvektor bőv́ıtése újabb elemekkel

h(2:4) a h vektor 2., 3. és 4. koordinátájából álló vektor

h([1 4 5]) a h vektor 1., 4. és 5. koordinátájából álló vektor

h(2)=[] elhagyja a h vektor 2. koordinátáját

h([2 4])=[] elhagyja a h vektor 2. és 4. koordinátáját

Fontos! Ha a=[-1 3 2] akkor az a(6)=4 utaśıtás eredménye az a=[-1

3 2 0 0 4] vektor (a legkisebb olyan vektor, amelyben van értelme a
a(6)=4 utaśıtásnak, a nemdefiniált elemeket 0-kal tölti fel. Megváltozik
a vektor mérete, erre nem figyelmeztet!)
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Néhány hasznos függvény

min(x) és max(x) az x vektor legkisebb és legnagyobb eleme

sort(x) az x elemeit növekvő sorrendbe rendezi

sort(x,’descend’) az x elemeit csökkenő sorrendbe rendezi

flip(x) az x elemeit ford́ıtott sorrendben sorolja fel

length(x) az x vektor elemeinek a száma

sum(x) az x vektor elemeinek összege

prod(x) az x vektor elemeinek szorzata

mean(x) az x vektor elemeinek átlaga

x(3) az x vektor harmadik eleme

x(1:3) az x vektor első három eleme

x(3:end) az x vektor minden elemei a harmadiktól az utolsóig
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Műveletek vektorokkal

Ha a és b két ugyanolyan méretű vektor, akkor

a+b ill. a-b a két vektor összege és különbsége

x=a+1 egy ugyanolyan méretű vektor, mint a, xi = ai + 1

x=a.̂ 2 egy ugyanolyan méretű vektor, mint a, xi = a2
i .

x=a.*b egy ugyanolyan méretű vektor, mint a és b, xi = aibi

x=a./b egy ugyanolyan méretű vektor, mint a és b, xi = ai
bi

x=1./a egy ugyanolyan méretű vektor, mint a, xi = 1
ai

dot(a,b) az a és b skaláris szorzata

Fontos! A műveleti jel előtti pont a művelet elemenkénti végrehajtását
eredményezi

sin, cos, tan, exp, log, sqrt, abs, stb. mind elemenként hajtódik végre.

NaN : Not a Number (pl. 0/0, Inf/Inf)
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1. feladat

(a) Az elemek egyenkénti begépelése nélkül álĺıtsa elő az alábbi
vektorokat!

(1) a = (0, 1, · · · , 30)
(2) b = (2, 4, 6, . . . , 100),
(3) c = (2, 1.9, 1.8, · · · , 0.1, 0)
(4) d = (0, 3, 6, . . . , 27, 30,−100, 30, 27, · · · , 6, 3, 0)
(5) e =

(
1
2 ,

1
3 , · · · ,

1
20

)
(6) f =

(
1
2 ,

2
3 , · · · ,

19
20

)
(b) Legyen x egy adott 100 elemű sorvektor. Az x vektorból álĺıtsa elő

azt az y vektort, melynek elemei

(1) az x vektor elemei ford́ıtott sorrendben felsorolva,
(2) az x vektor első 5 eleme,
(3) az x vektor elemei ugyanolyan sorrendben, kivéve az x 4. elemét
(4) az x vektor elemei ugyanolyan sorrendben, kivéve az x 5., 72. és 93.

elemét
(5) az x vektor páratlan sorszámú elemei
(6) az x vektor 2., 5., 17. és 81. eleme.

Baran Ágnes Numerikus matematika Labor 26 / 212



2. feladat

Legyen x egy adott sorvektor. A for utaśıtás használata nélkül az x
vektorból álĺıtsa elő azt az y vektort, melynek i-edik eleme

(1) x(i) + 2

(2) x(i)2

(3) 1/x(i)

(4) sin(x(i)3 − 1)

(5) x(i)− i
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Mátrixok Octave/Matlab-ban

Mátrix megadása elemenként

A = [1, 2, 3; 4, 5, 6; 7, 8, 9] vagy A = [1 2 3; 4 5 6; 7 8 9]
eredménye:

A =

 1 2 3
4 5 6
7 8 9


(Az egy sorban álló elemeket vesszővel vagy szóközzel, a sorokat
pontosvesszővel választjuk el.)

A mátrixelemek számozása (1, 1)-gyel kezdődik.

A(i,j) a mátrix (i , j)-edik eleme.
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Mátrixok megadása

Vektorok összefűzésével

Ha a=[1 -2 0]; b=[2 -11 7]; m=[-3;0;7]; n=[1; -2; 0]; akkor
B=[a;b] eredménye:

B =

(
1 −2 0
2 −11 7

)
C=[a’ b’] és D=[m n] eredménye:

C =

 1 2
−2 −11

0 7

 D =

 −3 1
0 −2
7 0


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Mátrixok bőv́ıtése

Az előbb definiált mátrixokkal, vektorokkal:
E=[A;a] vagy E=[A;[1,-2,0]] eredménye

E =


1 2 3
4 5 6
7 8 9
1 −2 0


Tehát: [mátrix ,,sortörés” (azaz ;) sorvektor]

Az F=[A m] vagy F=[A, m] eredménye

F =

 1 2 3 −3
4 5 6 0
7 8 9 7


Tehát: [mátrix szóköz vagy vessző oszlopvektor]
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Mátrixok bőv́ıtése

G=[C D] és H=[C;D] eredménye

G =

 1 2 −3 1
−2 −11 0 −2

0 7 7 0

 H =



1 2
−2 −11

0 7
−3 1

0 −2
7 0


C(4,5)=9 eredménye:

C =


1 2 0 0 0
−2 −11 0 0 0

0 7 0 0 0
0 0 0 0 9


Megváltozik a mátrix mérete, erre nem figyelmeztet!
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Hivatkozás elemekre, sorokra, oszlopokra, részmátrixokra

size(A) az A mátrix mérete (egy kételemű sorvektor)

length(A) egy skalár: max(size(A))

A(i,j) az A mátrix (i , j)-edik eleme

A(i,:) egy sorvektor, az A mátrix i-edik sora

A(:,j) egy oszlopvektor, az A mátrix j-edik oszlopa

A(2:3,:) az A mátrix 2. és 3. sora

A([1 2 4],:) az A mátrix 1., 2. és 4. sora

A(:,[1 3]) az A mátrix 1. és 3. oszlopa

A(2:3,[1 3]) az A mátrix 2. és 3. sorának és 1. és 3. oszlopának
metszetéből álló mátrix
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Mátrixok ,,átszabása”

Sorok, oszlopok elhagyása mátrixokból

A(i,:)=[] az i-edik sor elhagyása

A(:,j)=[] a j-edik oszlop elhagyása

A([1 3],:)=[] az 1. és 3. sor elhagyása

A(:,[1 3])=[] az 1. és 3. oszlop elhagyása

Sor- és oszlopcsere

Az i-edik és j-edik sor illeve oszlop cseréje:
A([i,j],:)=A([j,i],:), ill. A(:,[i,j])=A(:,[j,i])

Mátrixból vektor

A(:) az A mátrix elemei oszlopfolytonosan felsorolva
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Néhány beéṕıtett mátrix

eye(n) az n × n-es egységmátrix
eye(n,m) az n ×m-es egységmátrix
ones(n) a csupa 1-esből álló n × n-es mátrix
ones(n,m) a csupa 1-esből álló n ×m-es mátrix
zeros(n) a csupa 0-ból álló n × n-es mátrix
zeros(n,m) a csupa 0-ból álló n ×m-es mátrix

Néhány hasznos függvény

numel(A) az A elemeinek száma

size(A) az A mérete

length(A) egyenlő max(size(A)) értékével
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Műveletek vektorok és mátrixok között

Legyen A és B két mátrix (melyek akár vektorok is lehetnek), c egy skalár.
Az

A+B, A-B, c*A, A*B, A ˆ 2

műveletek a hagyományos, lineáris algebrában értelmezett műveletek,
feltéve, hogy A és B mérete megfelelő. Az

A + c

művelet eredménye: az A minden eleméhez hozzáadunk c-t. Az

A/B és A\B

műveletek eredménye A · B−1 és A−1 · B.
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Műveletek vektorok és mátrixok között

Elemenkénti művelet

A műveleti jel előtti . jel a művelet elemenkénti végrehajtását eredményezi:

Az A.*B mátrix ij-edik eleme aij ∗ bij ,
az A.̂ 2 mátrix ij-edik eleme a2

ij ,
az A./B mátrix ij-edik eleme aij/bij .

A beéṕıtett függvények általában h́ıvhatók mátrix argumentummal is, pl.
sin(A), log(A), exp(A), abs(A), stb. Ilyenkor a függvény a mátrix
minden elemére végrehajtódik.
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3. feladat

Legyen x = [−1 4 0], y = [3 − 2 5]
és A = [−3 1 − 4; 6 2 − 5]. Döntse el, hogy az alábbi utaśıtások
közül melyik végrehajtható. Ha nem végrehajtható, akkor magyarázza meg
miért, ha végrehajtható, akkor fogalmazza meg mi lesz az eredmény!

(1) z = [x , y ]

(2) z = [x ; y ]

(3) z = [x ′, y ′]

(4) z = [x ′; y ′]

(5) z = [A; x ]

(6) z = [A, x ]

(7) z = [x ; A; y ]

(8) z = [A′; x ]

(9) z = [A′, x ]

(10) z = [A′, x ′]

(11) x + y

(12) x + y ′

(13) A + y

(14) A + 2

(15) x ./y

(16) A ˆ 2

(17) A. ˆ 2
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4. feladat

Legyen

A =

 1 2 3 4
5 6 7 8
9 10 11 12


Konstruálja meg (az elemek felsorolása nélkül) azt a B mátrixot, melyet
úgy kapunk, hogy

(1) elhagyjuk az A mátrix első sorát,

(2) elhagyjuk az A mátrix 2. és 4. oszlopát,

(3) elhagyjuk az A mátrix utolsó sorát és oszlopát

(4) kétszer egymás mellé ı́rjuk az A mátrixot,

(5) transzponáljuk az A mátrixot,

(6) felcseréljük az A mátrix 2. és 4. oszlopát

(7) négyzetre emeljük az A elemeit
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(8) az A minden elemét megnöveljük 3-mal

(9) A minden elemének vesszük a négyzetgyökét

(10) A minden elemének vesszük a szinuszát

(11) az A első sorának második elemét kicseréljük −2-re

(12) az A 2. sorát kicseréljük a [−1 0 − 2 3] vektorra
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5. feladat

Egy rövid utaśıtás seǵıtségével álĺıtsa elő az alábbi mátrixot!

A =

 1 2 3 4 5 6 7 8
20 18 16 14 12 10 8 6
2 4 8 16 32 64 128 256


Az előző feladat A mátrixával vizsgálja meg az alábbi utaśıtások
eredményét!

(1) sum(A)

(2) sum(A,2)

(3) reshape(A,6,4)

(4) max(A)

(5) max(A,[],2)

(6) max(A,2)

(7) flipud(A)

(8) fliplr(A)

(9) size(A)

(10) length(A)
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Néhány, lineáris algebrában hasznos függvény

det(A) az A determinánsa

inv(A) az A inverze

dot(a,b) az a és b vektorok belsőszorzata

norm(A) az A 2-normája (mátrixok és vektorok esetén is)

norm(A,inf) az A ∞-normája (mátrixok és vektorok esetén is)

norm(A,1) az A 1-normája (mátrixok és vektorok esetén is)

Az Ax = b lineáris egyenletrendszer megoldása (részletesen ld. később):

x=A\b
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Néhány hasznos függvény

diag

diag(a)

ahol a egy vektor, egy négyzetes mátrixszal tér vissza, főátlójában az
a vektorral

diag(a,k)

ahol a egy vektor, k egy egész, egy olyan mátrixszal tér vissza,
aminek a k-adik átlója az a vektor. A 0. átló a főátló, onnan felfelé
egyesével nő, lefelé egyesével csökken az átlók sorszáma.

diag(A)

ahol A egy mátrix (nem feltétlenül négyzetes) egy oszlopvektorral tér
vissza, az A főátlóbeli elemeivel

diag(A,k)

ahol A egy mátrix, k egy egész, egy oszlopvektorral tér vissza, az A
mátrix k-adik átlójának elemeivel.

Baran Ágnes Numerikus matematika Labor 42 / 212



Néhány hasznos függvény

tril és triu

tril(A)

Az A mátrix alsóháromszög részével tér vissza (a főátló és az alatta
álló elemek, a többi 0)

triu(A)

Az A mátrix felsőháromszög részével tér vissza (a főátló és a felette
álló elemek, a többi 0)

tril(A,k)

Az A mátrix k-adik átlójában és az alatta álló elemekkel tér vissza (a
többi 0)

triu(A,k)

Az A mátrix k-adik átlójában és a felette álló elemekkel tér vissza (a
többi 0)
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Függvények ı́rása
Az Octave/Matlab függvények szerkezete:

function kimenovaltozok=fvneve(bemenovaltozok)
utasitasok

end

Fontos! A fenti függvényt fvneve.m néven kell elmenteni.

Példák.

function y=masodf(x)

y=2*x.^2-3*x+5;

end

Ekkor a y=masodf(x) utaśıtás eredménye a 2x2 − 3x + 5 kifejezés értéke,
ahol x akár vektor is lehet, ebben az esetben a függvény elemenként
hajtódik végre és y is vektor (ezt az teszi lehetővé, hogy a fv-ben minden
művelet végrehajtható vektorokra is, mivel a négyzetreemelés jele elé
kitettük a . jelet)
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Normák, kond́ıciószámok
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1. feladat

Írjon 1-1 Octave/Matlab függvényt az 1−, 2−,∞−vektornormák
száḿıtására.

2. feladat

Írjon 1-1 Octave/Matlab függvényt az 1− és ∞−mátrixnormák
száḿıtására.

3. feladat

Olvassa el a norm és cond függvények help-jét.
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4. feladat

Oldja meg Octave/Matlab-bal az Ax = b lineáris egyenletrendszert, ha

A =

(
1 0.99
0.99 0.98

)
, b =

(
1.99
1.97

)
.

Tegyük fel, hogy b helyett

b + δb =

(
1.98
1.98

)
ismert. Oldja meg az Ay = b + δb egyenletrendszert is. Száḿıtsa ki a
megoldásvektor, illetve a jobboldali vektor relat́ıv hibáját ∞-normában.
Határozza meg cond∞(A) értékét! (Használja a beéṕıtett cond
függvényt.)
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5. feladat

Száḿıtsa ki a 6× 6-os Hilbert-mátrix kond́ıciószámát! (Használja a cond

és hilb beéṕıtett függvényeket!) Legyen B egy 6× 6-os véletlen mátrix
(használja a rand függvényt), száḿıtsa ki B kond́ıciószámát is (végezzen
több ḱısérletet)!

6. feladat

Írjon egy függvényt, mely adott n pozit́ıv egész szám esetén előálĺıtja azt
az A ∈ Rn×n mátrixot, melyre

aij =


1, ha i = j ,

−1, ha i < j ,

0, egyébként,

teljesül.
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7. feladat

Álĺıtsa elő a következő A ∈ R100×100 mátrixot illetve b ∈ R100 vektort, és
a backslash operátort használva oldja meg az Ax = b egyenletrendszert.
Ezután perturbálja a b vektort, pl. 1 helyett legyen b(100) = 1.00001 és
oldja meg a rendszert újra. Száḿıtsa ki az A kond́ıciószámát.

aij =


1, ha i = j ,

−1, ha i < j ,

0, egyébként,

b = (−98,−97, . . . , 0, 1)T .

Megjegyzés

Nagy mátrixok esetén a cond függvény helyett használjuk a condest

függvényt, amely az 1−normában vett kond́ıciószám becslését adja
(anélkül, hogy kiszáḿıtaná A−1-et.)
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Lineáris egyenletrendszerek, mátrixok felbontása
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1. feladat

Határozza meg az alábbi mátrixok inverzét Gauss-Jordan eliminációval!

(a)

A =

 2 2 3
1 −1 0
−1 2 1

 ,

(b)

B =

 3 −1 2
1 −3 −4
2 2 5

 ,

(c)

C =

 −2 1 4
1 0 3
−1 2 −3

 ,

(d)

D =

 −1 2 1
2 −3 1
1 1 2

 .
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2. feladat

Oldja meg LU-felbontással az Ax = b egyenletrendszert! Határozza meg
az A mátrix determinánsát!

(a)

A =

 −2 2 1
6 −3 −4
−4 1 1

 , b =

 0
−8

4

 ,

(b)

A =


−2 1 4 −2

2 −4 −1 1
−4 8 6 −3
−6 3 8 −3

 , b =


5
1
3

16

 ,

(c)

A =

 2 −4 2
−4 6 −1

1 0 −2

 , b =

 −2
5
0

 ,
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(d)

A =

 −4 −4 2
−2 −7 3

2 12 −5

 , b =

 −2
6

−13

 ,

(e)

A =


−1 −2 0 −3

1 −1 2 2
2 −2 6 5
0 −6 −2 −2

 , b =


−2

5
14

0

 ,

3. feladat

Oldja meg az Ax = b és Ax = c lineáris egyenletrendszereket
LU-felbontással!

A =

 −3 1 0
12 −6 2
−6 4 1

 , b =

 5
−28

12

 , c =

 −6
18
−15

 .
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4. feladat

Határozza meg az alábbi mátrixok Cholesky-felbontását! Száḿıtsa ki a
mátrixok determinánsát!

A =

 4 −2 −4
−2 10 5
−4 5 9



B =


4 −4 −4 0
−4 13 7 6
−4 7 6 −1

0 6 −1 17



C =

 9 −3 −3
−3 5 5
−3 5 9


Baran Ágnes Numerikus matematika Labor 54 / 212



5. feladat

Oldja meg az Ax = b lineáris egyenletrendszert Cholesky-felbontással!

(a)

A =


9 −6 −6 3
−6 8 6 −6
−6 6 9 −10

3 −6 −10 18

 , b =


36
−38
−47

58


(b)

A =

 9 −6 3
−6 20 −14

3 −14 14

 , b =

 −21
34
−34


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Lineáris algebra Octave/Matlab-bal

Példa

Oldjuk meg az Ax = b lineáris egyenletrendszert, ha

A =

 −2 −1 4
2 3 −1
−4 −10 −5

 , b =

 3
1

−12


Megoldás. Használjuk a backslash operátort!

>>A=[-2 -1 4; 2 3 -1; -4 -10 -5];

>>b=[3; 1; -12];

>>x=A\b

x=

3

-1

2

Ügyeljünk rá, hogy a b oszlopvektorként legyen megadva!
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Ha az egyenletrendszer kibőv́ıtett mátrixával megh́ıvjuk az rref függvényt:

>>rref([A b])

ans=

1 0 0 3

0 1 0 -1

0 0 1 2

akkor láthatjuk, hogy a Gauss-Jordan elimináció eredményeként valóban
ı́gy álĺıtható elő a b vektor az A oszlopvektoraiból, amelyek lineárisan
függetlenek, tehát a megoldás egyértelmű.
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Példa

Oldjuk meg az Ax = b lineáris egyenletrendszert, ha

A =

 −4 −4 2
−2 −7 3

2 12 −5

 , b =

 −2
6

−13


Megoldás. Próbálkozzunk ismét a backslash operátorral!

>>A=[-4 -4 2; -2 -7 3; 2 12 -5];

>>b=[-2; 6; -13];

>>x=A\b

warning: matrix singular to machine precision

x =

1.93162

-1.27350

0.31624
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Az Octave arra figyelmeztetett, hogy a mátrix szinguláris (valóban,
det(A) = 0), de ellenőrizhetjük, hogy Ax-b kereḱıtési hiba nagyságrendű,
azaz x-et tekinthetjük megoldásnak.

Próbálkozzunk az rref függvénnyel!

>>rref([A b])

ans=

1.0000 0 -0.1000 1.9000

0 1.0000 -0.4000 -1.4000

0 0 0 0

Azt látjuk, hogy a mátrix oszlopvektorai lineárisan függőek, de a b vektor
benne van az oszlopvektorok által felfesźıtett térben. Tudjuk, hogy ilyenkor
az egyenletrendszernek végtelen sok megoldása van, ezek közül egy:

x =

 1.9
−1.4

0


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Ha az egyenletrenszer összes megoldását szeretnénk tudni, akkor
használjuk a null függvényt, amely előálĺıtja a nulltér egy bázisát:

>>p=null(A)

p=

-0.092450

-0.369800

-0.924500

Ezek szerint a lineáris egyenletrendszer általános megoldása: 1.9
−1.4

0

+ λp

ahol λ ∈ R. (A kapott x megoldás a λ = −0.34207 konstanshoz tartozik.)
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Példa

Oldjuk meg az Ax = b lineáris egyenletrendszert, ahol

A =


1 1
1 2
1 3
1 4

 , b =


4
6
9

12


Megoldás. A backslash operátorral azt kapjuk, hogy

>>x=A\b

x=

1.0000

2.7000

Könnyen látható, hogy ez nem megoldása az egyenletrendszernek.
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Az rref függvénnyel:

>>rref([A b])

ans=

1 0 0

0 1 0

0 0 1

0 0 0

láthatjuk, hogy az alapmátrix rangja 2, a kibőv́ıtett mátrixé 3, az
egyenletrendszer ellentmondásos.

Ellentmondásos lineáris egyenletrendszerek esetén a backslash
operátor egy olyan x vektort ad vissza, melyre az Ax és b vektorok
eltérése euklideszi normában a legkisebb (azaz ‖Ax − b‖2 minimális).
Ilyenkor azt mondjuk, hogy x az egyenletrendszer legkisebb négyzetes
értelemben vett megoldása.
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6. feladat

Oldja meg Octave/Matlab-bal az Ax = b lineáris egyenletrendszert, ahol

(a)

A =

(
2 −3 1 1
−1 3 4 7

)
, b =

(
0
5

)
(b)

A =

 2 1
−3 4

5 −1

 , b =

 −5
24
−23


(c)

A =


2 1 5 0
−3 4 −13 22

5 −1 16 −14
1 1 2 2

 , b =


12
81
−33

15


Hasznos: ha az x racionális elemű vektor koordinátáit nem
tizedestört alakban akarjuk látni, akkor használhatjuk a rats(x)

utaśıtást, vagy a kiiratás formátumát álĺıtsuk át: format rat
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Több jobboldali vektor

Példa

Oldjuk meg az Ax = b és Ax = c egyenletrendszereket, ha

A =

 −2 −1 4
2 3 −1
−4 −10 −5

 , b =

 3
1

−12

 , c =

 17
1

−42


Megoldás. Mivel a két rendszer mátrixa azonos, ezért megoldhatjuk őket
egyszerre.

>>A=[-2 -1 4; 2 3 -1; -4 -10 -5];

>>b=[3; 1; -12]; c=[17; 1; -42];

>>x=A\[b c]

x=

3 -2

-1 3

2 4
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Több jobboldali vektor

Nagyméretű mátrixok esetén a futási időt jelentősen befolyásolhatja, hogy
az azonos mátrixszal adott rendszereket egyszerre, vagy külön-külön oldjuk
meg:

>> A=rand(10000);

>> b=ones(10000,1);

>> c=zeros(10000,1);

>> tic;x=A\[b,c];toc

Elapsed time is 6.116513 seconds.

>> tic;x=A\b; x2=A\c; toc

Elapsed time is 11.571959 seconds.

(A fenti eredmény egy Intel Core i5-4590 processzorral, 7.7 GiB
memóriával rendelkező gépen született).
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LU-felbontás

[L,U,P]=lu(A)

Ekkor

L: alsóháromszög mátrix, átlójában csupa 1-es

U: felsőháromszög mátrix

P: permutációs mátrix

úgy, hogy PA = LU.

[L1,U1]=lu(A)

Ekkor A = L1 · U1 úgy, hogy U1 megegyezik az előző U mátrixszal és
L1 = PTL.
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Cholesky-felbontás

chol(A)

elkésźıt́ı az A mátrix Cholesky-felbontását, a felbontásban szereplő
felsőháromszög mátrixszal tér vissza.

chol(A,’lower’)

elkésźıt́ı az A mátrix Cholesky-felbontását, a felbontásban szereplő
alsóháromszög mátrixszal tér vissza.

Ha az A nem pozit́ıv definit, akkor nem létezik a felbontás, hibaüzenetet
kapunk.
A felbontás létezéséhez a mátrixnak szimmetrikusnak kell lennie, ezt nem
vizsgálja, de első esetben csak az A felső-, a másodikban az alsóháromszög
részét használja.
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Több jobboldali vektor

Ha több lineáris egyenletrendszert kell megoldanunk, ahol a mátrix azonos,
a jobboldali vektorok különbözőek, de a jobboldali vektorok nem állnak
egyszerre rendelkezésre, akkor a következő utaśıtásokat használjuk:

Egyetlen egyszer, a rendszerek megoldása előtt késźıtsük el a mátrix
LU-felbontását:

>> [L,U]=lu(A);

Ahányszor egy újabb b jobboldali vektor rendelkezésünkre áll, adjuk ki az

>> x=U\(L\b);

utaśıtást, amivel megkapjuk az adott jobboldali vektor esetén a rendszer
megoldását.
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Mátrix inverze Octave/Matlab-bal

Az inv függvénnyel száḿıtható. Ha a mátrix nem négyzetes, vagy a
determinánsa 0 (vagy 0-hoz közeli), akkor hibaüzenetet, illetve
figyelmeztetést kapunk.

Nagyméretű mátrixok inverzének kiszáḿıtása túl költséges lehet.
Csak akkor számoljuk ki, ha ténylegesen szükségünk van az inverzre.

Pl. az Ax = b négyzetes mátrixú lineáris egyenletrendszer megoldása
x = A−1b módon kb háromszor annyi műveletbe kerül, mint az x = A\b
megoldás.

Baran Ágnes Numerikus matematika Labor 69 / 212



7. feladat

Tekintsük a következő mikrogazdasági modellt: földművesek,
állattanyésztők és bányászok egy-egy csoportja rendre gabonát, húst és
szenet “álĺıt elő”. Az előálĺıtott termék egy részét minden csoport maga
használja fel, egy részét a többiek veszik igénybe, egy részét pedig külső
piacon értékeśıti. Az alábbi táblázatban látható, hogy az egyes
csoportoknak egy egységnyi áru előálĺıtásához hány egységnyire van
szükségük a többi nyersanyagból, illetve hány egység a külső igény.
Határozza meg az előálĺıtott termékek mennyiségét úgy, hogy minden
igény ki legyen eléǵıtve, és ne keletkezzen felesleg.

földműves állattenyésztő bányász külső igény

növény 0.1 0.7 0.1 2
hús 0.2 0.1 0.3 3
szén 0.4 0.3 0.1 5
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8. feladat

Legyen A=pascal(10) (azaz A a 10× 10-es Pascal mátrix, ami egy
szimmetrikus, pozit́ıv definit mátrix), x=ones(10,1) és definiálja a b
vektort úgy, hogy b=A*x. Oldja meg az Ax = b rendszert az lu, chol és
A\b utaśıtásokat alkalmazva (használjon ,,format long”-ot)!
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Ritka mátrixok
A sparse függvény

>> A=[-1.1 0 0 2; 0 0 2 0; 0 -1 0 1;0 0 0 3]

A =

-1.1000 0 0 2.0000

0 0 2.0000 0

0 -1.0000 0 1.0000

0 0 0 3.0000

>> S=sparse(A)

S =

(1,1) -1.1000

(3,2) -1.0000

(2,3) 2.0000

(1,4) 2.0000

(3,4) 1.0000

(4,4) 3.0000
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Definiáljunk egy olyan 10× 10-es ritka mátrixot, melyben csak 5 átlóban
vannak 0-tól különböző elemek:

>> d=ones(10,1);

>> S=spdiags([d d -4*d d d],[-4 -1 0 1 4],10,10);

Megnézhetjük a nemnulla elemek elhelyezkedését:

>> spy(S)

0 2 4 6 8 10

nz = 40

0

1

2

3

4

5

6

7

8

9

10

11

A nemnulla elemek száma: nnz(S)
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Hasonĺıtsuk össze egy nagyméretű ritka mátrix esetén a tárigényt a
különböző tárolási módok esetén:

>> d=ones(10000,1);

>> S=spdiags([d d -4*d d d],[-4000 -1 0 1 4000],10000,10000);

>> F=full(S);

>> whos S F

Vizsgáljuk meg egy mátrix-vektor szorzás futási idejét:

>> x=rand(10000,1);

>> tic;b=S*x;toc

>> tic;b=F*x;toc

és egy lineáris egyenletrendszer megoldásának futási idejét

>> tic;y=F\b;toc

>> tic;y=S\b;toc
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Octave/Matlab alapok 2.
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Egy egyszerű ábra

Példa

Rajzoltassuk ki a (−1, 2), (0, 1), (1, 1.5), (2, 3) pontokat a śıkon!

1. lépés: Soroljuk fel egy változóban a pontok első koordinátáit!

>> x=[-1, 0, 1, 2];

2. lépés: Soroljuk fel egy másik változóban a pontok második
koordinátáit!

>> y=[2, 1, 1.5, 3];

(Figyeljünk rá, hogy “tizedesvessző” helyett “tizedespont” szerepel)

3. lépés: A plot függvény seǵıtségével rajzoltassuk ki a pontokat!

>> plot(x,y,'*')
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% kirajzolunk 4 pontot

x=[-1, 0, 1, 2];

y=[2, 1, 1.5, 3];

plot(x,y,'*')

-1 -0.5 0 0.5 1 1.5 2

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
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Az elkészült programunkat könnyen módośıthatgatjuk. Pl.

% kirajzolunk 4 pontot

figure

x=[-1, 0, 1, 2];

y=[2, 1, 1.5, 3];

plot(x,y,'*')

axis([-1.5 2.5 0.5 3.5])

A figure utaśıtás hatására egy új grafikus ablak nýılik. Ennek hiányában,
ha van megnyitott grafikus ablak, akkor abba késźıti el az ábrát, annak
korábbi tartalmát felüĺırva.

Az axis beálĺıtja a tengelyek határait.

A plot függvényről (ill. hasonlóan bármely más beéṕıtett függvényről) a
parancsablakba a

>> help plot

utaśıtást gépelve tudhatunk meg többet.
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% kirajzolunk 4 pontot

figure

x=[-1, 0, 1, 2];

y=[2, 1, 1.5, 3];

plot(x,y,'*')

axis([-1.5 2.5 0.5 3.5])

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

3.5
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A plot függvény

plot(x,y)

ábrázolja azokat a śıkbeli pontokat, melyeknek első koordinátája az x,
második az y változóban szerepel, és összeköti őket.

plot(x,y,’szin tipus’)

ábrázolja a pontokat, a megadott t́ıpusú markerrel, illetve
vonalt́ıpussal, a megadott sźınnel.

Vonalt́ıpusok

- folyamatos vonal
(alapértelmezés)

: pontozott vonal

- - szaggatott vonal

-. szaggatott-pontozott vonal
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A plot függvény

Markerek

* csillag

o kör

+ összeadás jel

x kereszt

s négyzet

d rombusz

p ötszög

h hatszög

< balra mutató háromszög

> jobbra mutató háromszög

∧ felfele mutató háromszög

∨ lefele mutató háromszög

Sźınek

b kék

r piros

g zöld

k fekete

w fehér

y sárga

m magenta

c cián
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% kirajzolunk 4 pontot

figure

x=[-1, 0, 1, 2];

y=[2, 1, 1.5, 3];

plot(x,y)

axis([-1.5 2.5 0.5 3.5])

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
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% kirajzolunk 4 pontot

figure

x=[-1, 0, 1, 2];

y=[2, 1, 1.5, 3];

plot(x,y,'-.r*')

axis([-1.5 2.5 0.5 3.5])
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Függvények ábrázolása

Példa

Rajzoltassuk ki az f (x) = sin(x) függvényt a [0, 2π] intervallumon!

Függvényeket úgy ábrázolhatunk, hogy a függvénygörbe nagyon sok
pontját kirajzoltatjuk.

Vegyünk a [0, 2π] intervallumon sok pontot, pl:

>> x=linspace(0,2*pi,50);

vagy

>> x=linspace(0,2*pi);

Az első esetben 50, a másodikban 100 egyforma lépésközű pontot kapunk
a [0, 2π] intervallumon.

Minden pontban száḿıtsuk ki a függvény értékét és rajzoltassuk ki a
pontokat!

Baran Ágnes Numerikus matematika Labor 84 / 212



x=linspace(0,2*pi);

y=sin(x);

figure; plot(x,y)
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Az fplot függvény

figure;

fplot('sin',[0,2*pi])
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Példa

Rajzoltassuk ki az f (x) = sin(3x)
x függvényt a [0.1, 2π] intervallumon!

x=linspace(0.1,2*pi);

y=sin(3*x)./x;

figure; plot(x,y)
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A tengelyek poźıcionálása
graphics_toolkit gnuplot %csak Octave-ban

x=linspace(0.1,2*pi);

y=sin(3*x)./x;

figure; plot(x,y)

set(gca,'xaxislocation','origin')
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Baran Ágnes Numerikus matematika Labor 88 / 212



graphics_toolkit gnuplot %csak Octave-ban

x=linspace(0.1,2*pi);

y=sin(3*x)./x;

figure; plot(x,y)

set(gca,'xaxislocation','origin')

box off
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graphics_toolkit gnuplot %csak Octave-ban

x=linspace(0.1,2*pi);

y=sin(3*x)./x;

figure; plot(x,y)

set(gca,'xaxislocation','origin')

box off; grid on
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Több függvény egy ábrán

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

1.5

2

2.5

3
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Több függvény egy ábrán
x=linspace(0.1,2*pi);

y=sin(3*x)./x;

z=cos(x);

figure; plot(x,y,x,z)

vagy

x=linspace(0.1,2*pi);

y=sin(3*x)./x;

z=cos(x);

figure; plot(x,y)

hold on;

plot(x,z)

hold off;

hold on

bekapcsolja a ,,rárajzoló” üzemmódot: az aktuális figure-ablakba
rajzol, az ottani eredeti ábra meghagyásával

Baran Ágnes Numerikus matematika Labor 92 / 212



Több függvény egy ábrán, legend box
x=linspace(0.1,2*pi);

y=sin(3*x)./x;

z=cos(x);

figure; plot(x,y,x,z)

legend('sin(3x)/x','cos(x)')
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Vonalt́ıpus és sźın megadása
x=linspace(0.1,2*pi);

y=sin(3*x)./x;

z=cos(x);

figure; plot(x,y,'k:',x,z,'m--')

legend('sin(3x)/x','cos(x)')
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Ćım, tengelyek, legendbox

0 0.5 1 1.5 2 2.5 3 3.5 4
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Ćım, tengelyek, legendbox

x=linspace(0.1,2*pi);

y=sin(3*x)./x;

z=cos(x);

figure; plot(x,y,'k:',x,z,'m--')

axis([-0.1 4.1 -1.1 3.1]);

xlabel('x-tengely')

ylabel('y-tengely');

title('Két függvény');

legend('sin(3x)/x','cos(x)');

title(’az abra cime’)

az ábra ćıme

xlabel(’szöveg’) illetve ylabel(’szöveg’)

a tengelyek feliratozása
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Néhány hasznos utaśıtás

axis tight

a tengelyek határait úgy álĺıtja be, hogy az ábra kitöltse a dobozt

axis equal

minden tengelyen ugyanazt az egységet használja

axis square

egyforma hosszú tengelyeket használ

axis off

nem jeleńıti meg a tengelyeket

box off

nem jelenik meg a doboz határolóvonala

grid on

berácsozza az ábrát

close all

bezár minden látható figure ablakot

Baran Ágnes Numerikus matematika Labor 97 / 212



Példa

Ábrázoljuk az f (x) = ex és g(x) = ln(x) függvényeket egy ábrán!

graphics_toolkit gnuplot %csak Octave-ban

x1=linspace(-5,2); y1=exp(x1);

x2=linspace(0.01,7); y2=log(x2);

figure; plot(x1,y1,x2,y2);

set(gca,'xaxislocation','origin')

set(gca,'yaxislocation','origin')

axis equal; grid on;

legend('exp(x)','ln(x)')
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Legkisebb négyzetes közeĺıtések
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1. feladat

Határozza meg az alábbi adatokra legkisebb négyzetes értelemben
legjobban illeszkedő egyenes egyenletét.

(a)
ti 0 1 2 3 4

fi 3 5
2

1
2 1 1

(b)
ti 0 1 1 2 3

fi 1 2 5
2 3 5

(c)
ti 3 3 3 3

fi 2 1 2 2
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Legkisebb négyzetes közeĺıtések, polinom illesztése

Példa

Határozzuk meg az alábbi adatokat legkisebb négyzetes értelemben
legjobban közeĺıtő egyenest!

ti 1 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

fi 8 8.9 9 9.8 10 11 11.5 11.5 12.5 13 13.7 14

Megoldás. Használjuk a polyfit függvényt!

p=polyfit(t,f,m)

megadja a (ti , fi ) adatokra legkisebb négyzetes értelemben legjobban
illeszkedő legfeljebb m-edfokú polinom együtthatóit a főegyütthatóval
kezdve.

>> t=[1 1.1 1.1:0.1:2];

>> f=[8 8.9 9 9.8 10 11 11.5 11.5 12.5 13 13.7 14];

>> p=polyfit(t,f,1)

p=

5.8235 2.5338
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A keresett egyenes egyenlete:

f (t) = 5.8235t + 2.5338

Ha ábrázolni szeretnénk az adatokat és az illesztett egyenest:

>> xx=linspace(0.9,2.1);

>> yy=polyval(p,xx);

>> figure; plot(t,f,'*',xx,yy)

A polyval függvény a p együtthatójú polinom értékeit adja az xx-ben
adott helyeken.
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2. feladat

Határozzuk meg az alábbi adatokat legkisebb négyzetes értelemben
legjobban közeĺıtő másodfokú polinomot!

ti 2.1 2.2 2.3 2.3 2.5 2.6 2.8 2.9

fi 2.5 2 2.5 2.7 3 4 5.4 7

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
2

3

4

5

6

7

8
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Legkisebb négyzetes közeĺıtések

Példa

Határozzuk meg az alábbi adatokat legkisebb négyzetes értelemben
legjobban közeĺıtő

F (t) = x1 + x2 cos(πt) + x3 sin(πt)

alakú modell paramétereit!

ti 0.1 0.5 1.2 1.5 2 2.1 2.4 3 3.2

fi 3.9 2.6 -0.8 0.3 3.2 3.8 3.2 -0.7 -0.9

Megoldás. A paramétereket az

ATAx = AT f

Gauss-féle normálegyenlet megoldása szolgáltatja.
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ATAx = AT f

ahol

A =


1 cos(πt1) sin(πt1)
1 cos(πt2) sin(πt2)
...
1 cos(πt9) sin(πt9)

 , f =


f1

f2
...

f9

 , x =

 x1

x2

x3



Álĺıtsuk elő a megadott adatokból az A mátrixot:

>> t=[0.1 0.5 1.2 1.5 2 2.1 2.4 3 3.2]';

>> f=[3.9 2.6 -0.8 0.3 3.2 3.8 3.2 -0.7 -0.9]';

>> A=[ones(9,1), cos(pi*t), sin(pi*t)];

Ügyeljünk rá, hogy a t és az f oszlopvektor legyen!
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Oldjuk meg a normálegyenletet!

>> x=(A'*A)\(A'*f)

x =

1.4372

2.0310

1.1711

A legjobban illeszkedő adott alakú modell tehát:

F (t) = 1.4372 + 2.0310 cos(πt) + 1.1711 sin(πt)

Ábrázoljuk az adatokat és az illesztett modellt!

>> xx=linspace(0,3.3);

>> yy=x(1)+x(2)*cos(pi*xx)+x(3)*sin(pi*xx);

>> figure; plot(t,f,'*',xx,yy)
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t=[0.1 0.5 1.2 1.5 2 2.1 2.4 3 3.2]';

f=[3.9 2.6 -0.8 0.3 3.2 3.8 3.2 -0.7 -0.9]';

A=[ones(9,1), cos(pi*t), sin(pi*t)];

x=(A'*A)\(A'*f);

xx=linspace(0,3.3);

yy=x(1)+x(2)*cos(pi*xx)+x(3)*sin(pi*xx);

figure; plot(t,f,'*',xx,yy)
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Feladatok

(3) Határozza meg az alábbi adatokat négyzetesen legjobban közeĺıtő
egyenes egyenletét!

ti 1 1.2 1.4 1.4 1.5 1.7 1.9 2

fi 6.2 7 8 7.9 8.4 9.2 10 10.6

(4) Határozza meg az alábbi adatokat négyzetesen legjobban közeĺıtő
harmadfokú polinomot!

ti 0.5 0.8 1.1 1.3 1.5 1.7 1.9 2.1 2.3

fi 2.5 2.3 1.8 1.3 0.9 0.4 0.1 -0.05 -0.01

(5) Határozza meg az alábbi adatokat legjobban közeĺıtő

F (t) = a +
b

t

alakú modell paramétereit!
ti 1 1.2 1.4 1.4 1.5 1.7 1.9 2 2.1 2.2

fi 4.2 3.8 3.4 3.3 3.3 3 2.8 2.8 2.75 2.7
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Feladatok

(6) Határozza meg az alábbi adatokat négyzetesen legjobban közeĺıtő

F (t) = x1 sin(t) + x2 sin(2t) + x3 sin(3t)

alakú modell paramétereit!

ti 0.1 0.5 1.2 1.5 2 2.1 2.4 3 3.2 3.4 3.8 4 4.2 4.6 5
fi 1 4.1 3 1 -1.5 -1.6 -1.7 -0.4 0.1 0.7 1.6 1.8 1.6 0.2 -2.5

(7) Határozza meg az alábbi adatokat négyzetesen legjobban közeĺıtő

F (t) = x1 + x2ln(t)

alakú modell paramétereit!

ti 0.1 0.5 1.2 1.5 2 2.1 2.4 3 3.2

fi -0.6 1.5 2.5 2.9 3.2 3.3 3.5 3.8 3.9
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8. feladat

Egy fél méter magas, téglatest alakú v́ıztartályt egyenletes sebességgel
töltenek fel v́ızzel. Amikor a tartályban 3 cm magasan áll a v́ız Péter
elhatározza, hogy megméri a v́ızszint változását az idő függvényében. A
következő méréseket végezte:

ti (min) 0 2 4 6 8 10 12

fi (cm) 3 4 5 5.5 6.5 7 8
Becsülje meg milyen magasan lesz a v́ız 20 perccel azután, hogy Péter
elind́ıtotta a mérést! Mikor ind́ıtották el a tartály feltöltését? Kb mikor
lesz tele a tartály?
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9. feladat

Egy ipari mérlegen egy nagyobb mennyiségű gabona van, amit valaki
egyenletes sebességgel lapátol a mérlegről zsákokba. Miután elkezdte a
munkát, időnként megnézzük mennyit mutat a mérleg. Az alábbi értékeket
láttuk:

idő (min) 1 15 20 28

tömeg (kg) 980 605 470 250

Becsüljük meg mennyi ideig tart, aḿıg az összes gabonát zsákokba rakja,
illetve eredetileg mennyi gabona volt a mérlegen.
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Interpoláció
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Lagrange-interpoláció

Példa

Határozzuk meg a (−2,−5), (−1, 3), (0, 1), (2, 15) pontokra illeszkedő
minimális fokszámú polinomot!

Megoldás. Késźıtsük el az osztott differenciák táblázatát!
Az első két oszlopba az alappontok és a megfelelő függvényértékek
kerülnek:

−2 −5
−1 3

0 1
2 15
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Száḿıtsuk ki az elsőrendű osztott differenciákat!

−2 −5
3−(−5)
−1−(−2) = 8

−1 3
1−3

0−(−1) = −2

0 1
15−1
2−0 = 7

2 15
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Száḿıtsuk ki a másodrendű osztott differenciákat!

−2 −5
8

−1 3 −2−8
0−(−2) = −5

−2

0 1 7−(−2)
2−(−1) = 3

7
2 15
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Száḿıtsuk ki a harmadrendű osztott differenciát!

−2 −5
8

−1 3 −5

−2 3−(−5)
2−(−2) = 2

0 1 3
7

2 15
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A táblázat felső élét használva ı́rjuk fel a polinomot!

−2 −5
8

−1 3 −5
−2 2

0 1 3
7

2 15

L3(x) = −5 + 8(x + 2)−5(x + 2)(x + 1) + 2(x + 2)(x + 1)x
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Megj.:

A Lagrange-polinom nem függ az adatok sorrendjétől, ı́gy választhattuk
volna a táblázat alsó élét is:

−2 −5
8

−1 3 −5
−2 2

0 1 3
7

2 15

L3(x) = 15 + 7(x − 2) + 3(x − 2)x + 2(x − 2)x(x + 1)

Mindkét esetben
L3(x) = 2x3 + x2 − 3x + 1
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Lagrange-interpoláció

1. feladat

Írja fel az alábbi pontokra illeszkedő minimális fokszámú polinomot!

(a) (−3,−6), (−2,−17), (−1,−8), (1,−2), (2, 19),

(b) (−3,−31), (−2,−8), (1, 1), (2, 24),

(c) (−2,−13), (−1,−4), (1, 2),

(d) (−2,−5), (−1, 3), (0, 1), (2, 15),

(e) (−1, 4), (1, 2), (2, 10), (3, 40),

(f) (−2, 38), (−1, 5), (1,−1), (2,−10), (3,−7),

(g) (−2,−33), (−1,−2), (1, 6), (2, 7), (3,−18).

2. feladat

Horner-algoritmussal határozza meg a p(−3) értéket, ha

p(x) = −x5 + 3x3 − 4x2 − 3x + 5
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Lagrange-interpoláció Octave/Matlab-bal

A polyfit függvény

polyfit(x,f,n-1) Ha x és f n-elemű vektorok, akkor megadja annak a
legfeljebb (n − 1)-edfokú polinomnak az együtthatóit, amely illeszkedik az
(xi , fi ), i = 1, . . . , n adatokra.

Példa

Határozzuk meg a (−2,−5), (−1, 3), (0, 1), (2, 15) pontokra illeszkedő
minimális fokszámú polinomot!

Megoldás.

>>x=[-2, -1, 0, 2];

>>f=[-5, 3, 1, 15];

>>p=polyfit(x,f,3)

p=

2.0000 1.0000 -3.0000 1.0000
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Ábrázoljuk a pontokat és az illesztett függvényt!

x=[-2, -1, 0, 2];

f=[-5, 3, 1, 15];

p=polyfit(x,f,3);

xx=linspace(-2.5,2.5);

yy=polyval(p,xx);

figure; plot(x,f,'*',xx,yy)

A polyval függvény:

yy=polyval(p,xx);

a p együtthatójú polinom értékeit adja az xx vektor koordinátáiban.
(p-ben a polinom együtthatói a főegyütthatóval kezdve szerepelnek)
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x=[-2, -1, 0, 2];

f=[-5, 3, 1, 15];

p=polyfit(x,f,3);

xx=linspace(-2.5,2.5);

yy=polyval(p,xx);

figure; plot(x,f,'*',xx,yy)
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Fontos! Ha a polyfit függvényben nem megfelelően ı́rjuk elő a polinom
fokszámát, akkor a polinom nem feltétlenül illeszkedik az adatokra.

x=[-1 0 1 2 3]; f=[-10 -4 -1 0 4]; p=polyfit(x,f,2);

xx=linspace(-1.2,3.2); ff=polyval(p,xx);

figure; plot(x,f,'*',xx,ff)
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3. feladat

Közeĺıtse az
f (x) = ex − sin(πx)

függvényt a [0, 1] intervallumon egy másodfokú polinommal. Ábrázolja az
eredeti és az illesztett függvényt közös ábrán.

4. feladat

Tudjuk, hogy egy test méterben számolva s0 utat tett meg, egyenletes v0

(m/s) sebességgel, majd ezután egyenletesen gyorśıtani kezdett a (m/s2)
gyorsulással. A gyorsulás kezdetétől száḿıtva a 2., 4. és 5. másodperc
végén az összes megtett út rendre 16, 38 és 52 m. Határozza meg s0, v0

és a értékét.

Baran Ágnes Numerikus matematika Labor 126 / 212



5. feladat

Rajzoltassuk ki közös ábrára az alábbi 3 függvényt:

az

f (x) =
1

1 + 25x2

függvényt a [−1, 1] intervallumon

az f függvény
−1,−0.8,−0.6, ..., 0.6, 0.8, 1

egyenlő lépésközű (ekvidisztáns) alappontokhoz tartozó
Lagrange-polinomját

az f függvény

xk = cos

(
2k − 1

22
π

)
, k = 1, 2, . . . , 11

alappontokhoz (Csebisev-pontok) tartozó Lagrange-polinomját.
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Hermite-interpoláció

Példa

Határozzuk meg az alábbi adatokra illeszkedő minimális fokszámú
polinomot!

xi −2 −1 1

f (xi ) −10 −2 2

f ′(xi ) −20 10 10

f ′′(xi ) −16

Megoldás. Az illeszkedési feltételek száma: m = 7, ı́gy az
Hermite-polinom legfeljebb 6-odfokú lesz.

Késźıtsük el az osztott differenciák táblázatát!

Baran Ágnes Numerikus matematika Labor 129 / 212



A kiinduló adatok:

xi −2 −1 1

f (xi ) −10 −2 2

f ′(xi ) −20 10 10

f ′′(xi ) −16

−2 −10
−20

−2 −10

−1 −2
10

−1 −2 −8
10

−1 −2

1 2
10

1 2
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Számoljuk ki a hiányzó értékeket!

−2 −10
−20

−2 −10

−1 −2
10

−1 −2 −8
10

−1 −2

1 2
10

1 2
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A hiányzó elsőrendű osztott differenciák:

−2 −10
−20

−2 −10
8

−1 −2
10

−1 −2 −8
10

−1 −2
2

1 2
10

1 2
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A hiányzó másodrendű osztott differenciák:

−2 −10
−20

−2 −10 28
8

−1 −2 2
10

−1 −2 −8
10

−1 −2 −4
2

1 2 4
10

1 2
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A harmadrendű osztott differenciák:

−2 −10
−20

−2 −10 28
8 −26

−1 −2 2
10 −10

−1 −2 −8
10 2

−1 −2 −4
2 4

1 2 4
10

1 2
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A negyedrendű osztott differenciák:

−2 −10
−20

−2 −10 28
8 −26

−1 −2 2 16
10 −10

−1 −2 −8 4
10 2

−1 −2 −4 1
2 4

1 2 4
10

1 2
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Az ötödrendű osztott differenciák:

−2 −10
−20

−2 −10 28
8 −26

−1 −2 2 16
10 −10 −4

−1 −2 −8 4
10 2 −1

−1 −2 −4 1
2 4

1 2 4
10

1 2
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A hatodrendű osztott differencia:

−2 −10
−20

−2 −10 28
8 −26

−1 −2 2 16
10 −10 −4

−1 −2 −8 4 1
10 2 −1

−1 −2 −4 1
2 4

1 2 4
10

1 2
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−2 −10
−20

−2 −10 28
8 −26

−1 −2 2 16
10 −10 −4

−1 −2 −8 4 1
10 2 −1

−1 −2 −4 1
2 4

1 2 4
10

1 2

H(x) =−10− 20(x + 2) + 28(x + 2)2−26(x + 2)2(x + 1)

+ 16(x + 2)2(x + 1)2−4(x + 2)2(x + 1)3

+ 1(x + 2)2(x + 1)3(x − 1)
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4. feladat

Határozza meg az alábbi adatokra illeszkedő minimális fokszámú
polinomot!

(a)

xi −1 1 2

f (xi ) 4 6 94

f ′(xi ) 9 17 213
(b)

xi −2 −1 1

f (xi ) 13 3 7

f ′(xi ) −31 14 18

f ′′(xi ) −40

6. feladat

Írja fel az f (x) = cos(x)− 3x függvény x0 = 0-beli érintőjének az
egyenletét!
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7. feladat

Az ábrán látható két útszakasz (Leis út, Felis út) egymáshoz közelebbi
végei között szeretnénk utat éṕıteni úgy, hogy az ı́gy kapott út menetében
ne legyen törés. Adja meg a hiányzó útszakasz nyomvonalát léıró
függvényt!
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Spline interpoláció Octave/Matlab-bal

Példa

Határozzuk meg az alábbi adatokhoz tartozó harmadfokú spline-t!

xi −2 −1 0 1 2 3

S 4 1 7 4 12 9

S ′ 15 8

Megoldás. Használjuk a spline függvényt!

p=spline(x,y)

Előálĺıtja a szakaszonként harmadfokú spline együtthatóit. Itt x az
alappontok vektora, az y vektor első és utolsó koordinátája a két
végpontban adott deriváltérték, a többi koordináta a függvényértékek.
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>>x=-2:3; y=[15 4 1 7 4 12 9 8]; p=spline(x,y)

p =

scalar structure containing the fields:

form = pp

breaks =

-2 -1 0 1 2 3

coefs =

19.0000 -37.0000 15.0000 4.0000

-12.0000 20.0000 -2.0000 1.0000

11.0000 -16.0000 2.0000 7.0000

-12.0000 17.0000 3.0000 4.0000

15.0000 -19.0000 1.0000 12.0000

pieces = 5

order = 4

dim = 1

A spline együtthatói: p.coefs
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Figyeljünk arra, hogy a polinomok együtthatóit a részintervallumok
kezdőpontjaihoz viszonýıtva kapjuk!

Az 5 illesztett polinom:

p1(x) = 19(x + 2)3 − 37(x + 2)2 + 15(x + 2) + 4

p2(x) = −12(x + 1)3 + 20(x + 1)2 − 2(x + 1) + 1

p3(x) = 11x3 − 16x2 + 2x + 7

p4(x) = −12(x − 1)3 + 17(x − 1)2 + 3(x − 1) + 4

p5(x) = 15(x − 2)3 − 19(x − 2)2 + (x − 2) + 12

Ellenőrizzük az illeszkedési feltételeket!
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Ha nem az együtthatókat szeretnénk tudni, hanem a spline értékét
valamely pont(ok)ban, akkor

yy=spline(x,y,xx)

ahol x és y az előbbi vektorok, xx azon pontok vektora, ahol a
helyetteśıtési értéket keressük. Ekkor yy-ba kerülnek a kiszámolt
függvényértékek.

>> x=-2:3;

>> y=[15 4 1 7 4 12 9 8];

>> xx=linspace(-2.1,3.1);

>> yy=spline(x,y,xx);

>> plot(x,y(2:end-1),'*',xx,yy)
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x=-2:3;

y=[15 4 1 7 4 12 9 8];

xx=linspace(-2.1,3.1);

yy=spline(x,y,xx);

plot(x,y(2:end-1),'*',xx,yy)
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Az ı́gy kapott függvény teljeśıti az illeszkedési feltételeket, és az első két
deriváltja folytonos.
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Megjegyzés

Ha a spline függvényt olyan x és y vektorokkal h́ıvjuk, amelyek
ugyanannyi koordinátát tartalmaznak, akkor a hiányzó két feltételt az
Octave/Matlab azzal helyetteśıti, hogy az első és utolsó két
részintervallum találkozásánál a harmadik deriváltat is folytonosnak tekinti.

x=-2:3;

y=[4 1 7 4 12 9];

xx=linspace(-2.1,3.1);

yy=spline(x,y,xx);

plot(x,y,'*',xx,yy)
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x=-2:3;

y=[4 1 7 4 12 9];

xx=linspace(-2.1,3.1);

yy=spline(x,y,xx);

plot(x,y,'*',xx,yy)
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8. feladat

Rajzoltassuk ki közös ábrán az alábbi 3 függvényt:

az

f (x) =
1

1 + 25x2

függvényt a [−1, 1] intervallumon

az f függvény
−1,−0.8,−0.6, ..., 0.6, 0.8, 1

egyenlő lépésközű (ekvidisztáns) alappontokhoz tartozó
Lagrange-polinomját

az f függvény
−1,−0.8,−0.6, ..., 0.6, 0.8, 1

alappontokhoz tartozó harmadfokú spline polinomját. (A
végpontokban a deriváltértékeket tekintsük 0-nak.)
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9. feladat

Az ábrán látható csúszda csúszófelületét szeretnénk elkésźıteni két
darabból úgy, hogy az A és C helyeken simán csatlakozzon a v́ızszintes
felületekhez, illetve a két lemez is minél simábban csatlakozzon egymáshoz
B-ben. Írja fel azt a függvényt, ami a csúszófelület lefutását modellezi!

BA C
 1 m  1 m

 1 m

 2.5 m
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10. feladat (szorgalmi)

Késźıtse el Octave-val az ábrán látható rajzot.
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Útmutatás: használja a bejelölt (egész koordinátájú) pontokat és a
spline függvényt.
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Numerikus integrálás
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Anońım függvények, function handle

Függvényeket definiálhatunk parancssorban is:

>> f1= @(x) x.*sin(x);

Ilyen módon az f 1(x) = x sin(x) függvényt definiáltuk, h́ıvása pl.:

>> y=f1(pi/4)

y=

0.5554

A @ szimbólum után zárójelben szerepelnek a függvény változói (most x),
ezt követi a függvény (ez egy ú.n. anońım függvény). Az = baloldalán
szereplő változó (most f1) egy ú.n. ,,function handle” t́ıpusú változó lesz.
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Akár többváltozós függvényeket is megadhatunk ı́gy:

>> f2= @(x,y) x.^2+x.*y-y+3;

Ekkor pl.

>> z=f2(2,-1)

z=

6

A function handle tárolja azon változók értékét is, amelyek szükségesek a
függvény kiértékeléséhez:

>> a=2.5; b=3;

>> f3= @(x) a*sin(x)+b*cos(x);

>> y=f3(-4)

y=

-0.0689

>> clear a b

>> y=f3(-4)

y=

-0.0689
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1. feladat

Egésźıtse ki az alábbi kódrészletet úgy, hogy I az f függvény [a, b]
intervallum feletti határozott integráljának közeĺıtése legyen

(a) összetett trapéz-képlettel,

(b) összetett Simpson-képlettel,

úgy, hogy az [a.b] intervallumot m részre osztjuk.

function I=myinteg(a,b,m)

f=@(x) ...

end
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2. feladat

Az előző kódok seǵıtségével közeĺıtse az

1∫
0

e−x
2
dx

integrál értékét m = 3, 6, 12 esetén.
Becsülje meg hány részintervallumra van szükség, ha ε = 10−3

pontossággal szeretnénk tudni az integrál értékét.
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Numerikus integrálás Octave-val

Egyváltozós függvények integrálására pl a quad függvényt használhatjuk.

Példa

Octave seǵıtségével száḿıtsuk ki az

3∫
0

x
√

1 + xdx

integrál értékét!

Megoldás.

>> f= @(x) x.*sqrt(1+x);

>> quad(f,0,3)

ans=

7.7333
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A quad függvény h́ıvása:

>> quad(fv,xmin,xmax)

ahol fv az integrálandó függvény (fv egy function handle t́ıpusú változó,
vagy egy sztring, mely egy függvény neve), xmin és xmax az alsó és felső
határ.
A quad függvény az fv függvényt vektor argumentummal fogja
megh́ıvni. Figyeljünk rá, hogy az fv ennek megfelelően legyen
megadva (elemenkénti operátorok!).

A quad függvény Gauss-kvadratúrát használ (egy olyan interpolációs
kvadratúraképlet, melynek alappontjai nem ekvidisztánsak, hanem
bizonyos polinomok zérushelyei), és alapértelmezésként 10−8 abszolút, és
10−8 relat́ıv hibával száḿıtja ki az integrál értékét.

A hibahatárok átálĺıthatóak:

>> quad(f,0,3,[1e-10 1e-10])

A vektor első eleme az abszolút, második a relat́ıv hiba.
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Az előző példában nem feltétlenül szükséges létrehozni a f változót:

>> quad(@(x) x.*sqrt(1+x),0,3)

Ha a függvényt korábban egy m-fájlban definiáltuk, pl.

function y=myfnc(x)

y=x.*sqrt(1+x)

end

akkor a quad függvénynek átadhatjuk a függvény nevét is (function
handle-ként, vagy sztringként):

>> quad(@myfnc,0,3)

vagy

>> quad('myfnc',0,3)

Hasonló a helyzet az Octave beéṕıtett függvényeivel:

>> quad(@sin,0,pi)

>> quad('sin',0,pi)
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Impropius integrálok

Az integrálás határai lehetnek −∞ és ∞ is:

>> f= @(x) exp(-x);

>> quad(f,0,inf)

ans = 1.0000

Az sem probléma, ha a függvény az intervallum végpontjaiban nincs
értelmezve:

>> f= @(x) 1./sqrt(1-x.^2);

>> quad(f,-1,1)

ans=

3.1416
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Ha nem ismert a függvény

Előfordulhat, hogy nem ismerünk egzakt képletet az integrálandó
függvényre, csak bizonyos pontokban ismerjük az értékeit. Ilyenkor a
trapz Octave-függvényt használhatjuk.

Példa

Egy jármű sebességét 1 percen kereszül mértük 5 másodperces
időközönként:

t (sec) 0 5 10 15 20 25 30 35 40 45 50 55 60

v (m/sec) 2.2 2.8 3 3 2.7 2.5 2.4 2.9 3.3 3.5 3.5 3.3 3

Becsüljük meg a jármű által megtett utat!

Megoldás. Tudjuk, hogy az a idő alatt megtett út:

S =

a∫
0

v(t)dt
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A trapz függvény seǵıtségével az integrál becslése:

>> x=0:5:60;

>> f=[ 2.2 2.8 3 3 2.7 2.5 2.4 2.9 3.3 3.5 3.5 3.3 3];

>> trapz(x,f)

ans =

177.5000

>> y=cumtrapz(x,f);

Ekkor

y = (0, 12.5, 27, 42, 56.25, 69.25, 81.5, 94.75, 110.25, 127.25, 144.75, 161.75, 177.5)

Az y vektor i-edik koordinátája az i-edik időpillanatig megtett utat
mutatja.
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3. feladat

Octave seǵıtségével száḿıtsa ki az alábbi határozott integrálok értékét!

(a)
π/2∫
−π/2

x sin(x2)dx

(b)
∞∫
−∞

1√
2π

e−
x2

2 dx

(c) ∫ 1

−1

√
1− x2dx
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4. feladat

Közeĺıtse az
10∫

0

x sin(5x)dx

integrált a quad függvénnyel, illetve a trapz függvénnyel úgy, hogy
alappontoknak az

xi=0:10 pontokat

xi=[0 0.5:9.5 10] pontokat

választja. Próbálja megmagyarázni a tapasztalt jelenséget (ábrázolja az
integrálandó függvényt a megadott intervallum felett). Növelje az
alappontok számát a trapz függvény esetén.
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Felületek ábrázolása Octave-ban

Ha egy kétváltozós függvényt az [a, b]× [c , d ] tartomány felett szeretnénk
ábrázolni, akkor vegyünk fel osztópontokat az [a, b] és [c , d ]
intervallumban és a meshgrid függvény seǵıtségével késźıtsük el az ezek
által meghatározott rácspontokat. A rácspontokban száḿıtsuk ki az
abrázolni ḱıvánt függvény értékeit és ábrázoljuk a mesh vagy surf

függvények seǵıtségével.

Példa a rács előálĺıtására:
Ha a tartomány [0, 15]× [0, 10], akkor

>> x=0:15; y=0:10;

>> [X,Y]=meshgrid(x,y);

Ekkor X és Y is 11× 16-os mátrix.
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>> x=0:15; y=0:10;

>> [X,Y]=meshgrid(x,y);

Ekkor X és Y is 11× 16-os mátrix:

X =


0 1 . . . 14 15
0 1 . . . 14 15
...
0 1 . . . 14 15

 Y =


0 0 . . . 0 0
1 1 · · · 1 1
...

10 10 . . . 10 10


(Az X és Y mátrixokat ,,egymásra helyezve” megkapjuk az összes
lehetséges (xi , yj) párt)
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Felületek ábrázolása Octave-ban

Példa

Ábrázoljuk az
f (x , y) = xe−(x2+y2)

függvényt a T = [−2, 2]× [−1, 1] tartomány felett!

Megoldás.
Vegyünk fel sok pontot a [−2, 2] és a [−1, 1] intervallumban!

>> x=linspace(-2,2);

>> y=linspace(-1,1);

“Rácsozzuk be” a tartományt!

>> [xx,yy] = meshgrid(x,y);

Száḿıtsuk ki a rácspontokban a függvény értékét!

>> zz = xx.*exp(-xx.^2-yy.^2);
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Felületek ábrázolása Octave-ban
x=linspace(-2,2);

y=linspace(-1,1);

[xx,yy] = meshgrid(x,y);

zz = xx.*exp(-xx.^2-yy.^2);

figure; mesh(xx,yy,zz)
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Kétváltozós függvények numerikus integrálása Octave-val
Használjuk a dblquad függvényt!

Példa

Száḿıtsuk ki a
2∫
−2

1∫
−1

xe−x
2−y2

dydx

integrál értékét!

Megoldás.

>> f= @(x,y) x.*exp(-x.^2-y.^2)

>> dblquad(f,-2,2,-1,1)

ans= 3.1812e-19

Megjegyzés: Az integrál kiszáḿıtása dblquad függvénnyel bizonyos
esetekben sok időt vehet igénybe.
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5. feladat

Száḿıtsa ki a következő integrálok értékét!

(a)
π/4∫
0

0∫
−π/3

2y sin x cos2 xdydx

(b)
∞∫
−∞

∞∫
−∞

1

2π
e−

x2+y2

2 dxdy

Baran Ágnes Numerikus matematika Labor 172 / 212



Nemlineáris egyenletek
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1. feladat

Egésźıtse ki a lent adott Octave-függvényt úgy, hogy az f függvény
[a, b]-beli gyökének felező-módszerrel történő e pontosságú közeĺıtését és
az ehhez szükséges lépésszámot adja vissza (ha f (a) · f (b) < 0). maxit az
elvégzett lépések számának maximumát jelöli.

function [x,k]=felezo(a,b,e,maxit)

f=@(x)

if f(a)*f(b)>0

error(' ... ')

end

end
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2. feladat

Tesztelje az előző kódját az alábbi függvényekkel:

(a) f (x) = x3 − 3x − 2 a [0, 3] intervallumon

(b) f (x) = x3 − 3x + 2 a [0, 3] intervallumon

3. feladat

Az előző kód mintájára ı́rjon egy kódot, mely húrmódszerrel közeĺıti a
függvény gyökét.
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4. feladat

Írjon egy Octave-függvényt, mely megadott x0 kezdőpont, maxit
maximális iterációszám, ε pontosság esetén egy adott f függvény gyökét
közeĺıti Newton-módszerrel, a gyök közeĺıtésével és az elvégzett iterációk
számával tér vissza, illetve ha az algoritmus nem konvergál, vagy egy
Newton-lépés nem definiált, akkor a megfelelő hibaüzenettel.

5. feladat

Az előző függvénnyel közeĺıtse a 2. feladat (a) és (b) részében megadott
függvények gyökeit az x0 = 1.5 kezdőpontból indulva. Hasonĺıtsa össze az
elvégzett lépések számát a két f függvény esetén. Hasonĺıtsa össze a
lépésszámot a felező-, illetve húrmódszer esetén szükséges lépésszámokkal
is. Magyarázza meg a tapasztalt jelenséget!

6. feladat

Alkalmazzuk a Newton-módszert az f (x) = x3 − 5x függvény gyökének
közeĺıtésére az x0 = 1 pontból indulva!
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7. feladat

Közeĺıtse
√

5 értékét Newton-módszerrel.

8. feladat

Mutassa meg, hogy az 3x3 − 12x + 4 = 0 egyenletnek van gyöke a [0, 1]
intervallumban. Vizsgálja meg az x0 ∈ [0, 1],

xk+1 =
3x3

k + 4

12
, k = 0, 1, ...

eljárás konvergenciáját! Írjon egy Octave-kódot, amely kiszámolja az
iteráció első néhány lépését! Módośıtsa a kódot úgy, hogy olyan k értékre
álljon le, amelyre |xk − xk−1| < ε, ahol ε > 0 adott.

9. feladat

Mit mondhatunk az x0 ∈ [−π/2, π/2], xk+1 = 1
3 cos(xk) eljárás

konvergenciájáról?
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10. feladat

Tekintsük a

−4x1 + cos(2x1 − x2) = 3

−3x2 + sin x1 = 2 x1, x2 ∈ [−π, π]

egyenletrendszert. Mit mondhatunk az egyenletrendszer
megoldhatóságáról, illetve az

x
(k+1)
1 = −3

4
+

1

4
cos(2x

(k)
1 − x

(k)
2 )

x
(k+1)
2 = −2

3
+

1

3
sin x

(k)
1

(k = 0, 1, 2, . . . ) eljárás konvergenciájáról?
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11. feladat

Próbálja meg az
xex − 1 = 0, x ∈ [0.25, 1]

egyenlet gyökét az

x0 = 0.5, xk+1 = g(xk), k = 0, 1, . . .

fixpont-iterációval közeĺıteni úgy, hogy

(a) g(x) = e−x

(b) g(x) = 1+x
1+ex

(c) g(x) = x + 1− xex

Mit tapasztal?
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12. feladat

Írjon egy Octave-függvényt, mely egy adott g : Rn → Rn függvény esetén
a g(x) = x egyenlet gyökét közeĺıti fixpont-iterációval. A függvény
bemenő paraméterei a kezdővektor, a pontosság és a maximális
iterációszám legyenek.

13. feladat

Közeĺıtse a 10. feladatban adott egyenletrendszer gyökét az előző kóddal.

14. feladat

Közeĺıtse az  x1

x2

x3

 =

 0.1x2
1 + 0.1x2

2 + 0.1x2
3

0.1x1 + 0.1x2 + 0.1x3

0.1x1x2x3 + 0.3


egyenletrendszer [0, 1]× [0, 1]× [0, 2]-beli gyökét fixpont–iterációval!
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Nemlineáris egyenletek megoldása Octave-val

Például az fsolve függvényt használhatjuk.

[xopt,fopt] = fsolve(F,x0)

Az F (x) = 0 egyenlet gyökét közeĺıti az x0 kezdőértékből indulva, ahol F
akár egy többváltozós függvény is lehet.

xopt : a gyök közeĺıtése,
fopt : a függvény értéke xopt-ban
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Példa

Közeĺıtsük a cos(x) = 3x egyenlet megoldását az fsolve seǵıtségével.

Írjuk át az egyenletet F (x) = 0 alakba:

cos(x)− 3x = 0.

H́ıvjuk meg az fsolve függvényt pl x0 = 0 kezdőértékkel.

>> F=@(x) cos(x)-3*x;

>> [xopt,fopt]=fsolve(F,0)

xopt = 0.31675

fopt = -2.8390e-09
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Példa

Közeĺıtsük a 10. feladatban adott egyenletrendszer megoldását az fsolve

seǵıtségével.

>> F=@(x) [-4*x(1)+cos(2*x(1)-x(2))-3; -3*x(2)+sin(x(1))-2];

>> [xopt,fopt]=fsolve(F,[0;0])

xopt =

-0.50406

-0.82766

fopt =

-3.9646e-09

3.1555e-10

Baran Ágnes Numerikus matematika Labor 183 / 212



Polinomok gyökeinek közeĺıtésére a roots függvényt használhatjuk:

r=roots(p)

ahol a p vektorban a polinom együtthatóit kell felsorolni a főegyütthatóval
kezdve.

Példa

Közeĺıtsük a p(x) = 2x3 − x + 1 polinom gyökeit.

>> p=[2 0 -1 1]

>> r=roots(p)

r =

-1.00000 + 0.00000i

0.50000 + 0.50000i

0.50000 - 0.50000i
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15. feladat

(a) Közeĺıtse a 3x = cos(x) egyenlet gyökeit!

(b) Közeĺıtse a 3x3 − 12x + 4 = 0 egyenlet gyökeit!

(c) Közeĺıtse az ex = sin(x) egyenlet gyökeit!

(d) Közeĺıtse az ln(x) = 2− x egyenlet gyökét!

(e) Közeĺıtse a cos2(x) + 2 sin(x) = 2 egyenlet gyökét!

(f) Közeĺıtse az x4 − x3 − 2x2 − 2x + 4 = 0 egyenlet gyökeit!

16. feladat

Közeĺıtse az alábbi egyenletrendszer gyökét a [−1, 1]2 tartományon.

sin(x1 + 2x2) + x1x2 = 0

cos(x2 − 1)− sin(x1) = 0
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Optimalizálás
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Egyváltozós függvények minimalizálása Octave-val

Az fminbnd függvény:

[xopt,fopt]=fminbnd(f,a,b)

Az f függvény [a, b] intervallumbeli lokális minimumhelyének közeĺıtését
adja.
xopt: a lokális minimumhely közeĺıtése
fopt: a függvény értéke az xopt helyen

Példa

Keressük meg az f (x) =
√

x − 2 sin(x) függvény [0, π]-beli minimumhelyét.

f=@(x) sqrt(x)-2*sin(x);

[xopt,fopt]=fminbnd(f,0,pi)

xopt = 1.3543

fopt = -0.78957
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Az fminsearch és fminunc függvények:

[xopt,fopt]=fminsearch(f,x0)

[xopt,fopt]=fminunc(f,x0)

Az f függvény lokális minimumhelyének közeĺıtését adja az x0

kezdőpontból indulva.

Mindkettő alkalmas többváltozós függvények minimalizálására is.

f=@(x) sqrt(x)-2*sin(x);

[xopt,fopt]=fminsearch(f,0.5)

xopt = 1.3542

fopt = -0.78957

xopt,fopt]=fminunc(f,0.5)

xopt = 1.3543

fopt = -0.78957
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1. feladat

(a) Határozza meg az f (x) = x2 + cos(3x) függvény összes [0, 6]
intervallumbeli lokális minimumhelyét.

(b) Határozza meg az f (x) = x2 + cos(3x) függvény összes [0, 6]
intervallumbeli lokális maximumhelyét.

2. feladat

(a) Határozza meg az f (x) = sin(2x) sin(3x) függvény összes [0, 5]
intervallumbeli lokális minimumhelyét.

(b) Határozza meg az f (x) = sin(2x) sin(3x) függvény összes [0, 5]
intervallumbeli lokális maximumhelyét.
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3. feladat

A parttól 10 km-re fekvő sziget áramellátását szeretnénk biztośıtani egy
olyan áramellátó központból, amely közvetlenül a parton helyezkedik el, 20
km-re a partnak a szigethez legközelebbi pontjától. Ha 250 ezer Ft-ba
kerül 1 km v́ız alatti vezeték elhelyezése, és 100 ezerbe 1 km vezeték
teleṕıtése a szárazföldön, akkor határozzuk meg a minimális költségű
útvonalat.

x

10

20
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4. feladat

Egy 1 l űrtartalmú, henger alakú konzervdobozt szeretnénk késźıteni.
Határozza meg a doboz méreteit úgy, hogy adott vastagságú lemezből
késźıtve a lehető legkevesebb anyagra legyen szükség az elkésźıtéséhez.

5. feladat

Egy 15 cm-szer 20 cm-es kartonlapból egy fedél nélküli dobozt szeretnénk
hajtogatni (a lap 4 sarkából 1-1 négyzetet kivágva, a keletkező ,,füleket”
felhajtva). Adja meg a doboz méretét úgy, hogy annak térfogata
maximális legyen.
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6. feladat

Egy 30 cm széles lemezből szeretnénk csatornát hajtogatni úgy, hogy a
lemez két szélén 10-10 cm-t valamilyen szögben felhajtunk. Határozza
meg a szöget úgy, hogy a csatornába a lehető legtöbb v́ız férjen.
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Felületek ábrázolása

Példa

Rajzoltassuk ki az f : R2 → R, f (x) = x3
1 + x3

2 − 3x1 − 3x2 felületet a
[−2, 2]× [−2, 2] tartomány felett.

xx=linspace(-2,2);

yy=xx;

[X,Y]=meshgrid(xx,yy);

Z=X.^3+Y.^3-3*X-3*Y;

figure; mesh(X,Y,Z)
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Példa

Rajzoltassuk ki az f : R2 → R, f (x) = x3
1 + x3

2 − 3x1 − 3x2 felület
szintvonalait a [−2, 2]× [−2, 2] tartomány felett.

xx=linspace(-2,2);

yy=xx;

[X,Y]=meshgrid(xx,yy);

Z=X.^3+Y.^3-3*X-3*Y;

figure; contour(X,Y,Z)

axis equal

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
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A szintvonalakra rá́ırathatjuk a ,,magassági számokat” is:

xx=linspace(-2,2);

yy=xx;

[X,Y]=meshgrid(xx,yy);

Z=X.^3+Y.^3-3*X-3*Y;

figure; contour(X,Y,Z,'ShowText','on')

axis equal
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Többváltozós függvények minimalizálása

Példa

Határozzuk meg az f (x) = x3
1 + x3

2 − 3x1 − 3x2 függvény gradiensét és a
stacionárius pontjait.

∇f (x) =

(
∂f
∂x1
∂f
∂x2

)
=

(
3x2

1 − 3
3x2

2 − 3

)
Stacionárius pont: ahol ∇f (x) = 0.

A függvénynek 4 stacionárius pontja van:

(−1,−1), (−1, 1), (1,−1), (1, 1)
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Példa

Rajzoltassuk ki az f (x) = x3
1 + x3

2 − 3x1 − 3x2 függvény szintvonalait és a
gradiens mezőt a [−2, 2]× [−2, 2] tartomány felett.

Figyeljünk rá, hogy a gradiens mező rajzolásához nagyobb beosztású
rácsot használjunk.

%a szintvonalak

xx=linspace(-2,2); yy=xx;

[X,Y]=meshgrid(xx,yy);

Z=X.^3+Y.^3-3*X-3*Y;

figure; contour(X,Y,Z)

axis equal

%a gradiensmezo

xx=linspace(-2,2,11); yy=xx;

[X,Y]=meshgrid(xx,yy);

dX=3*X.^2-3;

dY=3*Y.^2-3;

hold on; quiver(X,Y,dX,dY)
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Az f (x) = x3
1 + x3

2 − 3x1 − 3x2 függvény szintvonalai és a gradiensmező.
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A gradiensmező kirajzolásához használhatjuk az Octave gradient

függvényét is. (Ekkor nem kell kiszámolnunk a gradienst, az Octave
numerikusan közeĺıti azt)

%a szintvonalak

xx=linspace(-2,2); yy=xx;

[X,Y]=meshgrid(xx,yy);

Z=X.^3+Y.^3-3*X-3*Y;

figure; contour(X,Y,Z)

axis equal

%a gradiensmezo

xx=linspace(-2,2,11); yy=xx;

[X,Y]=meshgrid(xx,yy);

Z=X.^3+Y.^3-3*X-3*Y;

[dX,dY]=gradient(Z);

hold on; quiver(X,Y,dX,dY)
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Tegyük rá az ábrára a stacionárius pontokat is!
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Az előző ábrán megfigyelhetjük, hogy

a gradiensvektor merőleges az adott pontbeli szintvonalra

a vektorok hossza a gradiens nagyságát, az iránya a gradiens irányát
mutatja

a stacionárius pontokban a gradiensvektor hossza 0

A gradiensvektor az adott pontban a legmeredekebb emelkedés irányába
mutat, a (−1)-szerese (a negat́ıv gradiens) pedig a legmeredekebb
csökkenés irányába.

Ha a gradiensmező helyett a negat́ıv gradiensmezőt rajzoltatjuk ki, akkor a
nyilak a csökkenés irányába mutatnak.

Baran Ágnes Numerikus matematika Labor 202 / 212



-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Az f (x) = x3
1 + x3

2 − 3x1 − 3x2 függvény szintvonalai és a negat́ıv
gradiensmező.
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Példa

Határozzuk meg az f (x) = x3
1 + x3

2 − 3x1 − 3x2 függvény stacionárius
pontjainak t́ıpusát!

A függvény Hesse-mátrixa:

H(x) =

(
6x1 0
0 6x2

)
Ha x = (−1,−1), akkor

H(x) =

(
−6 0

0 −6

)
,

ı́gy ∆1 < 0, ∆2 > 0, tehát ez a pont lokális maximumhely.
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Ha x = (−1, 1), akkor

H(x) =

(
−6 0

0 6

)
,

ı́gy ∆1 < 0, ∆2 < 0, tehát ez a pont nyeregpont.

Ha x = (1,−1), akkor

H(x) =

(
6 0
0 −6

)
,

ı́gy ∆1 > 0, ∆2 < 0, tehát ez a pont nyeregpont.

Ha x = (1, 1), akkor

H(x) =

(
6 0
0 6

)
,

ı́gy ∆1 > 0, ∆2 > 0, tehát ez a pont lokális minimumhely.
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7. feladat

Számolja ki az alábbi függvények gradiensét, a stacionárius pontjaikat, és
határozza meg a stacionárius pontok t́ıpusát. Rajzoltassa ki a felületeket,
illetve egy másik ábrán a függvény szintvonalait és a negat́ıv gradiens
mezőt.

(a) f (x1, x2) = 10− x2
1 − x2

2

(b) f (x1, x2) = x2
1 x2 − 2x1x2

2 + 3x1x2 + 2

(c) f (x1, x2) = x3
1 − x2

1 x2
2 − x1 + x2

2

8. feladat

Határozza meg azt a téglatestet, melynek térfogata 1000 cm3 és éleinek
összhossza minimális.
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9. feladat

Egy cég 20000 $-t költött egy új termék kifejlesztésére. A termék
előálĺıtási költsége darabonként 2 $. Egy piackutató szerint, ha a cég R
$-t költene reklámra, és ezután a terméket darabonként A $-ért árulná,
akkor a kereslet

2000 + 4
√

R − 20A

darab lenne. Mennyit érdemes reklámra költeni, és milyen áron érdemes
ḱınálni a terméket, ha a hasznot maximalizálni szeretnék?
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Többváltozós függvények minimalizálása Octave-val

Az fminsearch vagy az fminunc függvényeket használhatjuk.

Példa: Keressük meg az f (x) = x3
1 + x3

2 − 3x1 − 3x2 függvény egy lokális
minimumhelyét.

Mindkét függvény h́ıvásához meg kell adnunk a minimumhely egy kezdeti
közeĺıtését.

>> f=@(x) x(1)^3+x(2)^3-3*x(1)-3*x(2);

>> [xopt,fopt]=fminsearch(f,[0.5,0.5])

xopt =

0.99996 1.00000

fopt =

-4.0000
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Az fminunc függvénnyel:

>> f=@(x) x(1)^3+x(2)^3-3*x(1)-3*x(2);

>> [xopt,fopt]=fminunc(f,[0.5,0.5])

xopt =

1.0000 1.0000

fopt = -4.0000
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10. feladat

Rajzoltassa ki a megadott tartomány felett az alábbi kétváltozós
függvényeket, a szintvonalaikat, a negat́ıv gradiensmezőt és közeĺıtse az
adott tartományon belül a minimumhelyüket.

f (x1, x2) = 1
6 x3

1 − x1 + 1
4 x1x2

2 , ha x ∈ [−2.5, 2.5]2

f (x1, x2) = sin(x1) cos(x2), ha x ∈ [0, 2π)× [0, 2π)

f (x1, x2) = x2(1− x2
1 − x2

2 ), ha x ∈ [−1.5, 1.5]2
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11. feladat

Egy téli üdülőövezetben a mentőhelikopter bázisállomását úgy szeretnénk
elhelyezni, hogy az n adott śıközponttól mért legnagyobb távolsága
minimális legyen. Írjon egy Octave-függvényt, melynek input paramétere
az az A ∈ Rn×2 mátrix, melynek soraiban a śıközpontok koordinátái
találhatóak, output paramétere pedig a mentőhelikopter bázisállomásának
koordinátáit tartalmazó kételemű vektor.

12. feladat

Adott egy bolthálózat n üzletének elhelyezkedése. Helyezzük el az
áruraktárat úgy, hogy az üzletektől vett távolságainak összege minimális
legyen. Írjon egy Octave-függvényt, melynek input paramétere az az
A ∈ Rn×2 mátrix, melynek soraiban az üzletek koordinátái találhatóak,
output paramétere pedig az áruraktár koordinátáit tartalmazó kételemű
vektor.
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13. feladat

Írjon egy Octave-függvényt, mely egy adott f függvény minimumhelyét
közeĺıti Newton-módszerrel egy x0 kezdővektorból indulva ε pontossággal,
legfeljebb maxit lépést végezve. A függvény output paraméterei a
minimumhely közeĺıtése és az elvégzett lépések száma legyen.
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