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LebegOopontos szamok
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Lebegopontos szamok

1. feladat.
Legyen a =2, t =4, k- = -5, k. =5.
(a) irja fel a kovetkezd szamok lebeg8pontos alakjat.

30, 26, 0.875, 0.5625, 1.625, 2.75

(b) Hany pozitiv normalizalt lebegépontos szam &brazolhatd ilyen

jellemzok mellett?
(c) Mi lesz a legnagyobb dbrazolhaté szam és a legkisebb pozitiv

normalizalt lebegépontos szam?
(d) Mi lesz az aldbbi szamokhoz rendelt lebegbpontos szam szabalyos

kerekités, illetve levdgas esetén?

1
1 4 . = . =
0.1, 0.4, 0.3, 3 0.7, D
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2. feladat

(a) Abrazolja szdmegyenesen az a = 2, t = 4, k_ = —3, ky. = 2 jellemz8k
mellett felirhatd osszes pozitiv normalizalt lebegépontos szamot.

(b) A fenti szamabrazolasi jellemzSk mellett mennyi lesz My, €g és €1
értéke?

(c) Ezen jellemz6k mellett mondjon példat olyan x,y > 0 lebegépontos

szamokra, melyekre x + y < M teljesiil, de x + y nem lebegSpontos
szam.

(d) Mondjon példat olyan x,y > 0, x # y lebegépontos szdmokra,
melyekre fI(x — y) = 0 teljesiil.

(e) Mondjon példat olyan x,y > 0 lebeg&pontos szdmokra, melyekre
fl(x + y) = x teljesiil.
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Octave/Matlab bevezet6

Részletes dokumentacio:

@ Octave:
https://www.gnu.org/software/octave/

o Matlab:
https://www.mathworks.com/help/matlab/
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https://www.gnu.org/software/octave/
https://www.mathworks.com/help/matlab/ 

A parancsablakba utasitdsokat gépelhetiink, pl:

>> 3+4
ans =
7

>> 3%1.5
ans =
4.5000

>> cos(0)
ans =

Ha masképp nem rendelkeziink, akkor az eredmény az ans nevii valtozéba
keriil.
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Hasznalhatunk mas valtozdkat is, pl.:

>> a=3+4
a=
7

>> a=3; b=4; c=a+tb
C=
7

Ha egy értékado utasitast pontosvesszovel zarunk le, akkor az
értékadas végrehajtodik, de az eredmény nem jelenik meg a
parancsablakban. PI.:

>> a=3; b=4; c=a+tb;

A viéltozd értékét ekkor is megkérdezhetjik, nevének begépelésével:
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Valtozdnevek

o Betiivel vagy aldhizassal (Octave), illetve betiivel (Matlab) kell
kezdddniuk, tartalmazhatnak betliket, szamokat, alahdzast.
Megkiilonbozteti a kis- és nagybetiiket. Ne haszndljunk ékezetes
betliket!

o Nem lehetnek valtozénevek az Octave/Matlab kulcsszavai (pl. if,
end, stb), az iskeyword utasitdssal felsoroltathatjuk ezeket a
kulcsszavakat.

o Figyeljiink rd, hogy ne hasznaljuk véltozénévként fliggvények neveit
(pl. cos, size, stb). Ha nem vagyunk biztosak benne, hogy egy név
létezik-e mdr, akkor az exist fiiggvénnyel ellendrizhetjiik (pl. exist
cos)

@ A clear utasitdssal torolhetiink valtozdkat (pl. clear a,b torli az a
és b valtozdkat). A clear all utasitdssal minden véltozé torlédik.

Baran Agnes Numerikus matematika Labor 9/212



Osszehasonlité operatorok

Ertékiik 1 (igaz), vagy 0 (hamis).
@ a<b Igaz, ha a kisebb, mint b

@ a<=b  Igaz, ha a nem nagyobb, mint b

@ a>b  lIgaz, ha a nagyobb, mint b

@ a>=b Igaz, ha a nem kisebb, mint b

@ a== Igaz, ha a egyenld b-vel

@ a~=b  Igaz, ha a nem egyenl6 b-vel

@ al=b  (Csak Octave-ban!) Igaz, ha a nem egyenlé b-vel

Ha a és b azonos méretli matrixok, akkor az osszehasonlitds elemenként
torténik (és a visszaadott érték egy logikai tomb)
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m-fajlok
Az Octave/Matlab futtathaté dllomanyai az m-fjlok.
@ Nyissunk meg a szerkesztGablakban egy uj fajlt.
° frjuk ide a programunkat
A megjegyzéseinket

» Octave-ban % vagy # jel mogott,
» Matlab-ban % jel mégott

helyezhetjiik el.

Tobb sorbdl all6 blokkot a %{ és %} jelek kozé helyezve tehetiink
megjegyzésbe.

Itt is figyeljiink a sorvégi pontosvesszokre, ha egy értékadé utasitas
végén lemarad, akkor annak eredménye futds kozben megjelenik a
parancsablakban.

o Mentsiik el a fajlt.

o Futtassuk a programunkat.
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for-ciklus

for ciklusvaltozo=vektor
utasitasok
end

Példak

s=0;

for i=1:100
s=s+i;

end

s=100;

for i=98:-2:2
s=s+i;

end

Baran Agnes Numerikus matematika Labor 12 /212



while-ciklus

while logikai kifejezés
utasitasok
end

Példa

k=10;

F=1;

while k>1
F=Fx*k;
k=k-1;

end
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3. feladat

(a) Vizsgélja meg szamitégépén a 0.4 — 0.5 + 0.1 == 0 logikai kifejezés

értékét! Magyardzza meg a tapasztalt jelenséget! Mi lesz a
0.1 — 0.5+ 0.4 == 0 logikai kifejezés értéke?
(b) Mit tapasztal, ha az aldbbi kédokat lefuttatja?
a=0;
for i=1:5
a=a+0.2;
end
a==

a=1;

for i=1:5
a=a-0.2;

end

a==

v
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4. feladat
(a) irjon egy kédot a gépi epszilon meghatérozasara.

(b) Olvassa el az Octave/Matlab eps fiiggvényének help-jét. Nézze meg
az eps (azaz az eps(1) ) értékét.

5. feladat

Vizsgélja meg szamitégépén a 200 + 1 == 266, 266 4 10 == 266

290 1100 == 29, 290 1 1000 == 2% ¢s 200 4 10000 == 2°° |ogikai
kifejezések értékét! Keresse meg azt a legkisebb n > 0 szdmot, melyre a
200 1 n —— 206 |ogikai kifejezés értéke hamis. Mennyi az eps(2766)
értéke?
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6. feladat

(a) Az alabbi algoritmus végrehajtdsa utdn mennyi az x elméleti, illetve a
gépi szamitas utan adddo értéke?

x=1/3;

for i=1:40
x=4*xx-1;

end

(b) Az aldbbi algoritmus elméletileg minden x > 0 esetén az x eredeti
értékét adja vissza. Vizsgdlja meg mi torténik a gyakorlatban, ha az
algoritmust x = 1000, x = 100 kezdGértékkel futtatja! Mi az oka a
tapasztalt jelenségnek?

for i=1:60
x=sqrt (x) ;

end

for i=1:60
X=x"2;

end

v
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7. feladat

Legyen x = (10290, 1). Szdmitsa ki gépén az x vektor normajat az alabbi

két (matematikailag ekvivalens) médon. Magyardzza meg a tapasztalt
jelenséget!

()

Il = /¢ + &

X1 2
¢ = max{al, bol}, x|l =c- \/ (%)

Cc

(b)

+(3)

8. feladat

Irassa ki a realmax és realmin értékét. Vizsgalja meg a
realmin(’single’) és realmax(’single’) értékeket is.
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Octave/Matlab alapok 1.
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Vektorok Octave/Matlab-ban

Megkiilonbozteti a sor- és oszlopvektorokat

Sorvektorok

Az a = (—1.2,3.1,4.7,1.9) vektor megadasa elemei felsorolasaval:

@ az elemeket vesszével valasztjuk el:
a=[-1.2, 3.1, 4.7, 1.9]
@ vagy az elemeket székozzel valasztjuk el:

a=[-1.2 3.1 4.7 1.9]

A vektorkoordindtdk szamozasa 1-gyel kezdddik, a(i) az a vektor j-edik
koordinatdja.

length(a) az a vektor koordindtdinak szdma

a=[] ures vektor
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Vektorok, mint szabalyos sorozatok
A kettospont operatorral

e a b=(1,2,3,4,5) vektor:
b=1:5

e ac=(54,3,21) vektor:

5:-1:1

C

e ad=(2,22,2.4,2.6,2.8,3) vektor
d=2:0.2:3

Altalaban:

x=elsoelem:lepeskoz:utolsoelem

ahol a 1épéskoz negativ is lehet, vagy

x=elsoelem:utolsoelem

ekkor a Iépéskoz 1.
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Vektorok, mint szabalyos sorozatok
A linspace fiiggvénnyel:

e aze=(1,1.2,1.4,1.6,1.8,2) vektor
e=linspace(1,2,6)
@ egy 100 koordinatabdl 4llé f vektor

f=linspace(1,2)

Altalaban:
x=linspace(elsoelem,utolsoelem,elemekszama)
ahol a koordindtdk egyforma Iépéskozzel kovetik egymdst, vagy
x=linspace(elsoelem,utolsoelem)

ekkor a koordinatak szama 100.
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Oszlopvektorok

Oszlopvektorok megaddsa

o elemeinek felsoroldsaval (a vektor koordinatdit pontosvesszével
valasztjuk el)

m=[-3;0;7]

@ egy sorvektor transzpondldsaval: n=[1 -2 4 -1]°
(valéjaban a ’ jel konjugalt transzponaltat eredményez, a
konjugalas nélkiili transzponalas: a.’ vagy transpose(a))

x(1) és length(x) az x vektor i-edik koordindtdja és az x vektor
koordindtdinak szdma (ugyantigy mint a sorvektoroknal)

size(x) az x vektor mérete (sorvektorokndl az [1 length(x)] vektor,
oszlopvektoroknal a [length(x) 1] vektor)
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Vektorok konstrualasa mas vektorokbdl

[a b] két sorvektor egymds utan flizése

[m;n] két oszlopvektor egymas utan fiizése

[-4 a 3 -1] sorvektor bdvitése ljabb elemekkel

[1;m;-3] oszlopvektor bovitése tjabb elemekkel

h(2:4) a h vektor 2., 3. és 4. koordinatdjabdl allé vektor
h([1 4 5]) a h vektor 1., 4. és 5. koordinatdjabdl allé vektor
h(2)=[] elhagyja a h vektor 2. koordinatajat

h([2 4]1)=[] elhagyja a h vektor 2. és 4. koordinatajat

Fontos! Ha a=[-1 3 2] akkor az a(6)=4 utasitds eredménye az a=[-1
3 2 0 0 4] vektor (a legkisebb olyan vektor, amelyben van értelme a
a(6)=4 utasitasnak, a nemdefinidlt elemeket 0-kal tolti fel. Megvaltozik
a vektor mérete, erre nem figyelmeztet!)
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Néhany hasznos fuggvény

min(x) és max(x) az x vektor legkisebb és legnagyobb eleme
sort(x) az x elemeit novekvd sorrendbe rendezi

sort (x,’descend’) az x elemeit csokkend sorrendbe rendezi
flip(x) az x elemeit forditott sorrendben sorolja fel
length(x) az x vektor elemeinek a szdma

sum(x) az x vektor elemeinek Osszege

prod(x) az x vektor elemeinek szorzata

mean(x) az x vektor elemeinek dtlaga

x(3) az x vektor harmadik eleme

x(1:3) az x vektor elsé harom eleme

x(3:end) az x vektor minden elemei a harmadiktdl az utolsdig
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Miveletek vektorokkal

Ha a és b két ugyanolyan méretli vektor, akkor
a+b ill. a-b a két vektor osszege és kiilonbsége

x=a+1 egy ugyanolyan méretii vektor, mint a, x; = a; + 1
2

x=a.” 2 egy ugyanolyan méretii vektor, mint a, x; = a7.

x=a.*b egy ugyanolyan méretli vektor, mint a és b, x; = a;b;

x=a./b egy ugyanolyan méretli vektor, mint a és b, x; = %

x=1./a egy ugyanolyan méretii vektor, mint a, x; = al

i

dot(a,b) az a és b skaldris szorzata

Fontos! A miiveleti jel el6tti pont a miivelet elemenkénti végrehajtasat
eredményezi

sin, cos, tan, exp, log, sqrt, abs, stb. mind elemenként hajtédik végre.

NaN : Not a Number (pl. 0/0, Inf/Inf)
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1. feladat
(a) Az elemek egyenkénti begépelése nélkiil &llitsa elé az aldbbi

vektorokat!

(1) 3—(0,1, 530)

(2) b=(2,4,6,...,100),

(3) ¢=(2,1.9,18,---,0.1,0)

(4) d =(0,3,6,...,27,30,—100,30,27, - ,6,3,0)
(5) e= (3.3 2)

(6) f=(3:5"2)

(b) Legyen x egy adott 100 elemii sorvektor. Az x vektorbdl allitsa el6
azt az y vektort, melynek elemei

(1

(2
(3
(4

) az x vektor elemei forditott sorrendben felsorolva,

) az x vektor elsé 5 eleme,

) az x vektor elemei ugyanolyan sorrendben, kivéve az x 4. elemét

) az x vektor elemei ugyanolyan sorrendben, kivéve az x 5., 72. és 93.
elemét

(5) az x vektor paratlan sorszdmu elemei

(6) az x vektor 2., 5., 17. és 81. eleme.
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2. feladat

Legyen x egy adott sorvektor. A for utasitds haszndlata nélkul az x
vektorbdl allitsa el6 azt az y vektort, melynek i-edik eleme
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Matrixok Octave/Matlab-ban

Matrix megadasa elemenként

A=11,2,3;4,5,6;7,8,9 vagy A=[1 2 3, 4 5 6, 7 8 9]
eredménye:

A=

~N B~

2
5
8

O O W

(Az egy sorban 4ll6 elemeket vesszdvel vagy sz6kozzel, a sorokat
pontosvesszével vélasztjuk el.)

A matrixelemek szamozasa (1,1)-gyel kezdédik.

A(i,j) a méatrix (/,/)-edik eleme.

Baran Agnes Numerikus matematika Labor 28 /212



Matrixok megadasa

Vektorok osszefiizésével
Ha a=[1 -2 0]; b=[2 -11 7]; m=[-3;0;7]; n=[1; -2; 0]; akkor

B=[a;b] eredménye:
1 -2 0
B= ( 2 11 7 )

C=[a’ b’] ésD=[m n] eredménye:

1 2 -3 1
C=| -2 -11 D= 0 -2
0 7 7 0
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Matrixok bovitése

Az el6bb definidlt matrixokkal, vektorokkal:
E=[A;a] vagy E=[A; [1,-2,0]] eredménye

_ N
N 0 Ol N
O O© O W

Tehat: [matrix ,,sortérés” (azaz ;) sorvektor]
Az F=[A m] vagy F=[A, m] eredménye
1 2 3 -3
F=1 456 0
7 8 9 7
Tehat: [matrix sz6kéz vagy vesszd oszlopvektor|
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Matrixok bovitése
G=[C D] és H=[C;D] eredménye

1 2
1 2 -3 1 _g _1;

G=| -2 -11 0 -2 H= s )
0 7 7 0 0 s

7 0

C(4,5)=9 eredménye:

1 2 000
C— -2 —-11 0 0 O
0 7 000
0 000 9

Megvaltozik a matrix mérete, erre nem figyelmeztet!

Baran Agnes Numerikus matematika Labor 31/212



Hivatkozas elemekre, sorokra, oszlopokra, részmatrixokra

size(A) az A matrix mérete (egy kételemii sorvektor)
length(A) egy skaldr: max(size(A))

A(i,j) az A métrix (i,j)-edik eleme

A(i,:) egy sorvektor, az A matrix i-edik sora

A(:,j) egy oszlopvektor, az A matrix j-edik oszlopa
A(2:3,:) az A matrix 2. és 3. sora

AC[1 2 4],:) az A méatrix 1., 2. és 4. sora

AC:,[1 3]) az A matrix 1. és 3. oszlopa

A(2:3,[1 3]) az A matrix 2. és 3. soranak és 1. és 3. oszlopdnak
metszetébol allé matrix
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Matrixok ,,atszabasa”

Sorok, oszlopok elhagyasa matrixokbél

@ A(i,:)=[] az i-edik sor elhagyasa

@ A(:,j)=[] a j-edik oszlop elhagyasa

@ A([1 3],:)=[] az 1. és 3. sor elhagyasa

@ A(:,[1 3]1)=I[1 az 1. és 3. oszlop elhagydsa

Sor- és oszlopcsere

Az i-edik és j-edik sor illeve oszlop cseréje:
AC[i,31,:)=ACL5,4i1, ), ill. AC:, [1,31)=AC:, [5,1i])

Matrixbol vektor

A(:) az A matrix elemei oszlopfolytonosan felsorolva
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Néhany beépitett matrix

eye(n) az n X n-es egységmatrix

eye(n,m) az n X m-es egységmatrix

ones(n) a csupa 1l-esbdl allé n x n-es matrix
ones(n,m)  a csupa l-esbdl 4ll6 n x m-es matrix
zeros(n) a csupa 0-bdl 4ll6 n x n-es matrix

zeros(n,m) a csupa 0-bdl allé n x m-es matrix

Néhany hasznos fiiggvény

@ numel (A) az A elemeinek szdma
@ size(A) az A mérete

@ length(A) egyenld max(size(A)) értékével
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Miveletek vektorok és matrixok kozott

Legyen A és B két matrix (melyek akdr vektorok is lehetnek), c egy skalar.
Az

A+B, A-B, c*A, AxB, A" 2

miiveletek a hagyomanyos, linedris algebrdban értelmezett miveletek,
feltéve, hogy A és B mérete megfelel6. Az

A+c
mivelet eredménye: az A minden eleméhez hozzaadunk c-t. Az
A/B és A\B

miiveletek eredménye A- B~1 és A1 . B.
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Miveletek vektorok és matrixok kozott

Elemenkénti miivelet
A miveleti jel el6tti . jel a mivelet elemenkénti végrehajtasat eredményezi:

Az A.*B matrix jj-edik eleme a;; * bjj,
az A.” 2 métrix ij-edik eleme a2,

az A./B mitrix jj-edik eleme aj;/bj;.

A beépitett fliggvények dltaldban hivhaték matrix argumentummal is, pl.
sin(A), log(A), exp(A), abs(A), stb. llyenkor a fliggvény a matrix
minden elemére végrehajtédik.
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3. feladat

Legyen x=[-1 4 0, y=[3 —2 5]

és A=[-3 1 —4,6 2 —5]. Dontse el, hogy az alabbi utasitdsok
kozil melyik végrehajthaté. Ha nem végrehajthatd, akkor magyardzza meg
miért, ha végrehajthatd, akkor fogalmazza meg mi lesz az eredmény!

(1) z=[x,y] (10) z = [A',x]

(2) z=[xy] (11) x+y

(3) z=[x,y] (12) x 1y

(4) z=[x"1y] (13) A+y

(5) z=[Aix]

(6) 7 =[Ax] (14) A+2

(7) z=[x; A y] (15) x./y

(8) z=[A;x] (16) A~ 2

(9) z=[A,x] (17) A." 2 )
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4. feladat

Legyen
1 2 3 4
A=|5 6 7 8
9 10 11 12

Konstrudlja meg (az elemek felsorolasa nélkiil) azt a B matrixot, melyet
Ugy kapunk, hogy

1) elhagyjuk az A matrix elsé sorat,
2

3

(

(2) elhagyjuk az A matrix 2. és 4. oszlopat,
(3)
(4) kétszer egymds mellé irjuk az A matrixot,
(5)
(6)
(7)

elhagyjuk az A matrix utolsé sorat és oszlopat

5
6
7

transzponaljuk az A matrixot,
felcseréljiik az A matrix 2. és 4. oszlopat

négyzetre emeljiik az A elemeit
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(8)
(9)
(10) A minden elemének vessziik a szinuszat
(11)
(12)

12) az A 2. sordt kicseréljik a[-1 0 —2 3] vektorra

az A minden elemét megnoveljik 3-mal

A minden elemének vessziik a négyzetgyokét

az A els6 soranak masodik elemét kicseréljuk —2-re
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5. feladat
o Egy rovid utasitas segitségével allitsa el6 az aldbbi matrixot!

1 2 3 4 5 6 7 8
A= 20 18 16 14 12 10 8 6
2 4 8 16 32 64 128 256

o Az el6z6 feladat A matrixaval vizsgalja meg az aldbbi utasitasok

eredményét!

(1) sum(a) (6) max(4,2)
(2) sum(a,2) (7) flipud(A)
(3) reshape(4,6,4) (8) fliplr(A)
(4) max(A) (9) size(A)
(5) max(A,[1,2) (10) length(A)
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Néhany, linedris algebraban hasznos fuggvény

det (A) az A determinansa

inv(A) az A inverze

dot(a,b) az a és b vektorok belsészorzata

norm(A) az A 2-normdja (métrixok és vektorok esetén is)

norm(A,inf) az A co-normdja (matrixok és vektorok esetén is)

norm(A,1) az A 1-normdja (matrixok és vektorok esetén is)

Az Ax = b linedris egyenletrendszer megoldasa (részletesen Id. késébb):

x=A\b
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Néhany hasznos fuggvény

diag
o diag(a)
ahol a egy vektor, egy négyzetes matrixszal tér vissza, féatldjaban az
a vektorral

e diag(a,k)
ahol a egy vektor, k egy egész, egy olyan matrixszal tér vissza,
aminek a k-adik 4tléja az a vektor. A 0. atlé a f6atld, onnan felfelé
egyesével no, lefelé egyesével csokken az atlék sorszama.

o diag(A)
ahol A egy métrix (nem feltétleniil négyzetes) egy oszlopvektorral tér
vissza, az A féatldbeli elemeivel

o diag(A,k)
ahol A egy mdtrix, k egy egész, egy oszlopvektorral tér vissza, az A
matrix k-adik atléjanak elemeivel.
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Néhany hasznos fuggvény

tril és triu

o tril(A)
Az A matrix alséharomszog részével tér vissza (a f6atlé és az alatta
allé elemek, a tobbi 0)

o triu(A)
Az A mitrix felséharomszog részével tér vissza (a f64tl6 és a felette
allé elemek, a tobbi 0)

@ tril(A,k)
Az A mitrix k-adik atléjdban és az alatta allé elemekkel tér vissza (a
tobbi 0)

o triu(A,k)
Az A mitrix k-adik atléjdban és a felette 4ll6 elemekkel tér vissza (a
tobbi 0)
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Fuggvények irdsa
Az Octave/Matlab fiiggvények szerkezete:

function kimenovaltozok=fvneve(bemenovaltozok)
utasitasok
end

Fontos! A fenti fliggvényt fvneve.m néven kell elmenteni.
Példak.

function y=masodf (x)
y=2%x."2-3%x+5;
end

Ekkor a y=masodf (x) utasitds eredménye a 2x? — 3x + 5 kifejezés értéke,
ahol x akar vektor is lehet, ebben az esetben a fliggvény elemenként
hajtédik végre és y is vektor (ezt az teszi lehetévé, hogy a fv-ben minden
muvelet végrehajthaté vektorokra is, mivel a négyzetreemelés jele elé
kitettiik a . jelet)
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Normak, kondiciészamok
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1. feladat

Ilrjon 1-1 Octave/Matlab fliggvényt az 1—,2—, co—vektornormak
szamitdsara.

2. feladat

I/rjon 1-1 Octave/Matlab fliggvényt az 1— és co—matrixnormak
szamitdsara.

3. feladat

Olvassa el a norm és cond fiiggvények help-jét.
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4. feladat
Oldja meg Octave/Matlab-bal az Ax = b linearis egyenletrendszert, ha

1 0.99 1.99
A‘(0.99 0.98)’ b= < 1.97)‘

Tegyiik fel, hogy b helyett
1.98
b+ b = ( 138 )
ismert. Oldja meg az Ay = b + b egyenletrendszert is. Szamitsa ki a
megoldasvektor, illetve a jobboldali vektor relativ hibdjat oco-normdban.

Hatdrozza meg cond(A) értékét! (Haszndlja a beépitett cond
figgvényt.)
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5. feladat

Szamitsa ki a 6 x 6-os Hilbert-matrix kondiciészamat! (Haszndlja a cond
és hilb beépitett fliggvényeket!) Legyen B egy 6 X 6-os véletlen matrix

(hasznalja a rand fliggvényt), szamitsa ki B kondiciészamat is (végezzen
tobb kisérletet)!

6. feladat

frjon egy flggvényt, mely adott n pozitiv egész szam esetén eldallitja azt
az A € R™" mitrixot, melyre

1, hai=j,
aj = —1, hai<yj,
0, egyébként,

teljestil.
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7. feladat

Allitsa el a kdvetkezd A € RI00x100 sirivot illetve b € R0 vektort, és
a backslash operdtort haszndlva oldja meg az Ax = b egyenletrendszert.
Ezutdn perturbalja a b vektort, pl. 1 helyett legyen b(100) = 1.00001 és

oldja meg a rendszert tjra. Szdmitsa ki az A kondiciészamat.

1, hai=j,
aj =14 —1, hai<}j, b=(-98,-97,...,0, 1)T.
0, egyébként,

Megjegyzés
Nagy matrixok esetén a cond fliggvény helyett haszniljuk a condest

fuggvényt, amely az 1—normdban vett kondiciészam becslését adja
(anélkiil, hogy kiszdmitand A~1-et.)
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Linearis egyenletrendszerek, matrixok felbontasa
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1. feladat

Hatdrozza meg az aldbbi matrixok inverzét Gauss-Jordan eliminacidval!

(a) (c)
2 2 3 -2 1 4
A— 1 -1 0 |, C = 1 0 3 1,
-1 21 -1 2 -3
(b) (d)
3 -1 2 -1 21
B=|1 -3 -4 = 2 =91
> 2 5 ’ 1 1 2
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2. feladat

Oldja meg LU-felbontdssal az Ax = b egyenletrendszert! Hatdrozza meg
az A métrix determindnsat!
(a)
-2 2 1 0
A= 6 -3 -4 |, b=| -8 ],
-4 1 1 4
(b)
-2 1 4 2 5
2 -4 -1 1 1
A= -4 8 6 -3 |’ b= 3]
-6 3 8 -3 16
(c)
2 —4 2 -2
A=| -4 6 -1 |, b= 51,
1 0 -2 0

Baran Agnes Numerikus matematika Labor 52 /212



4 —4 2 -2
A= —2 -7 3|, b= 6 |,
2 12 -5 —13
(e)
-1 =2 0 -3 —2
1 -1 2 2 5
W= 2 =2 6 5 o= 14 |’
0 -6 —2 -2 0
3. feladat

Oldja meg az Ax = b és Ax = c linedris egyenletrendszereket
LU-felbontdssal!

3 10 5 -6
A= 12 -6 2|, b=[ -28], «c= 18
6 41 12 ~15

V.
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4. feladat

Hatarozza meg az aldbbi matrixok Cholesky-felbontdsat! Szamitsa ki a
matrixok determindnsat!

4 -2 —4
A=| -2 10 5
-4 5 9

4 —4 —4 0
—4 13 7 6
—4 7 6 -1

0 6 -1 17

9 -3 -3
C=| -3 5 5
-3 5 9

v
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5. feladat
Oldja meg az Ax = b linearis egyenletrendszert Cholesky-felbontdssal!

()

9 -6 -6 3 36

-6 8 6 —6 —38

A= -6 6 9 —10 |’ b= —47
3 -6 —-10 18 58

9 6 3 2
A= -6 20 —14 |, b=| 34
3 —14 14 —34
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Linedris algebra Octave/Matlab-bal

Példa
Oldjuk meg az Ax = b linedris egyenletrendszert, ha

2 -1 4 3
A= 2 3 -1 |, b= 1
—4 —10 -5 ~12

Megoldas. Haszndljuk a backslash operdtort!

>>A=[-2 -1 4; 2 3 -1; -4 -10 -5];
>>b=[3; 1; -12];

>>x=A\b
x=
3
-1
2

Ugyeljiink ra, hogy a b oszlopvektorként legyen megadval
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Ha az egyenletrendszer kibdvitett matrixaval meghivjuk az rref fiiggvényt:

>>rref ([A b])

ans=
100 3
010 -1
001 2

akkor lathatjuk, hogy a Gauss-Jordan eliminacié eredményeként valéban
igy allithaté el6 a b vektor az A oszlopvektoraibdl, amelyek linedrisan
fuggetlenek, tehat a megoldas egyértelmi.
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Példa

Oldjuk meg az Ax = b linedris egyenletrendszert, ha

4 4 2 -2
A= —2 -7 3|, b= 6
2 12 -5 ~13

Megoldas. Prébalkozzunk ismét a backslash operatorral!

>>A=[-4 -4 2; -2 -7 3; 2 12 -5];

>>b=[-2; 6; -13];

>>x=A\b

warning: matrix singular to machine precision
X =

1.93162
-1.27350
0.31624
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Az Octave arra figyelmeztetett, hogy a matrix szingularis (valdban,
det(A) = 0), de ellendrizhetjiik, hogy Ax-b kerekitési hiba nagysdgrendii,
azaz x-et tekinthetjik megoldasnak.

Prébalkozzunk az rref fiiggvénnyel!

>>rref ([A b])

ans=
1.0000 0 -0.1000 1.9000
0 1.0000 -0.4000 -1.4000
0 0 0 0

Azt latjuk, hogy a matrix oszlopvektorai linedrisan fliggdek, de a b vektor
benne van az oszlopvektorok &ltal felfeszitett térben. Tudjuk, hogy ilyenkor
az egyenletrendszernek végtelen sok megoldasa van, ezek kozil egy:

1.9
x=| —-14
0
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Ha az egyenletrenszer osszes megolddsat szeretnénk tudni, akkor
haszndljuk a null fiiggvényt, amely elédllitja a nulltér egy bazisat:

>>p=null (A)

p=
-0.092450
-0.369800
-0.924500

Ezek szerint a linedris egyenletrendszer dltaldnos megoldasa:

1.9
—14 | +XMp
0

ahol A € R. (A kapott x megoldds a A = —0.34207 konstanshoz tartozik.)
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Oldjuk meg az Ax = b linedris egyenletrendszert, ahol

Példa J

, b=
4 1

e N

4
6
9
2

Megoldas. A backslash operdtorral azt kapjuk, hogy
>>x=A\b
X=

1.0000

2.7000

Konnyen ladthatd, hogy ez nem megoldasa az egyenletrendszernek.
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Az rref fuggvénnyel:

>>rref ([A b])

ans=
100
010
001
00O

l[athatjuk, hogy az alapmdtrix rangja 2, a kibOvitett matrixé 3, az
egyenletrendszer ellentmondasos.

Ellentmondasos linedris egyenletrendszerek esetén a backslash
operator egy olyan x vektort ad vissza, melyre az Ax és b vektorok
eltérése euklideszi normaban a legkisebb (azaz ||Ax — b||, minimalis).
llyenkor azt mondjuk, hogy x az egyenletrendszer legkisebb négyzetes
értelemben vett megoldasa.
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6. feladat

Oldja meg Octave/Matlab-bal az Ax = b linedris egyenletrendszert, ahol
(a)
2 -3 11 0
A= ( -1 3 47 ) , b= ( 5 >
(b)
2 1 -5
5 -1 -23
(c)
2 1 5 0 12
-3 4 -13 22 81
A= 5 -1 16 —-14 |’ b= —-33
1 1 2 2 15

Hasznos: ha az x racionalis elemu vektor koordinatait nem
tizedestort alakban akarjuk latni, akkor hasznalhatjuk a rats(x)

utasitast, vagy a kiiratas formatumat allitsuk at: format rat
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Tobb jobboldali vektor

Példa
Oldjuk meg az Ax = b és Ax = c egyenletrendszereket, ha

—2 -1 4 3 17
A= 2 3 -1 ], b= 1|, c= 1
4 -10 -5 12 42

Megoldas. Mivel a két rendszer matrixa azonos, ezért megoldhatjuk Oket
egyszerre.

>>A=[-2 -1 4; 2 3 -1; -4 -10 -5];
>>b=[3; 1; -12]; c=[17; 1; -42];

>>x=A\[b c]
x=
3 -2
-1 3
2 4
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Tobb jobboldali vektor

Nagyméretii matrixok esetén a futdsi idot jelentésen befolyasolhatja, hogy
az azonos matrixszal adott rendszereket egyszerre, vagy kilon-kilon oldjuk
meg:

>> A=rand(10000) ;

>> b=ones(10000,1) ;

>> c=zeros(10000,1);

>> tic;x=A\[b,c];toc

Elapsed time is 6.116513 seconds.
>> tic;x=A\b; x2=A\c; toc

Elapsed time is 11.571959 seconds.

(A fenti eredmény egy Intel Core i5-4590 processzorral, 7.7 GiB
memoridval rendelkez6 gépen sziiletett).
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LU-felbontas

[L,U,P]=1u(h)
Ekkor

o L: alséharomszog matrix, atléjdban csupa l-es
o U: felsbharomszog matrix
@ P: permutdciés matrix

tgy, hogy PA= LU.

[L1,U1]=1u(d)

Ekkor A = L1- U1 dgy, hogy Ul megegyezik az el6z6 U matrixszal és
L1=PTL.
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Cholesky-felbontas

@ chol(A)
elkésziti az A matrix Cholesky-felbontdsat, a felbontdsban szerepld

felsbharomszog matrixszal tér vissza.

@ chol(A, ’lower’)
elkésziti az A matrix Cholesky-felbontdsat, a felbontdsban szereplo

alséharomszog matrixszal tér vissza.

Ha az A nem pozitiv definit, akkor nem létezik a felbontas, hibalizenetet

kapunk.
A felbontdas létezéséhez a matrixnak szimmetrikusnak kell lennie, ezt nem

vizsgalja, de elsd esetben csak az A fels6-, a masodikban az alséharomszog
részét hasznilja.
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Tobb jobboldali vektor

Ha tobb linearis egyenletrendszert kell megoldanunk, ahol a matrix azonos,
a jobboldali vektorok kilonbozéek, de a jobboldali vektorok nem allnak
egyszerre rendelkezésre, akkor a kovetkez6 utasitasokat hasznaljuk:

Egyetlen egyszer, a rendszerek megolddsa el6tt készitsiik el a matrix
LU-felbontdsat:

>> [L,U]=1u(hd);

Ahdnyszor egy Ujabb b jobboldali vektor rendelkezésiinkre 4ll, adjuk ki az
>> x=U\(L\b) ;

utasitast, amivel megkapjuk az adott jobboldali vektor esetén a rendszer
megolddsat.
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Matrix inverze Octave/Matlab-bal

Az inv fliggvénnyel szamithaté. Ha a matrix nem négyzetes, vagy a
determindnsa 0 (vagy 0-hoz kozeli), akkor hibalizenetet, illetve
figyelmeztetést kapunk.

Nagymeéretii matrixok inverzének kiszamitasa tual koltséges lehet.
Csak akkor szamoljuk ki, ha ténylegesen sziikségiink van az inverzre.

Pl. az Ax = b négyzetes matrixu linedris egyenletrendszer megoldasa
x = A~1b médon kb haromszor annyi miiveletbe keriil, mint az x = A\b
megoldas.
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7. feladat

Tekintsiik a kovetkezé mikrogazdasagi modellt: foldmivesek,

allattanyésztok és banydszok egy-egy csoportja rendre gabonat, hust és
szenet “dllit el6”. Az el6éllitott termék egy részét minden csoport maga
hasznalja fel, egy részét a tobbiek veszik igénybe, egy részét pedig kiilsé
piacon értékesiti. Az alabbi tablazatban lathatd, hogy az egyes

csoportoknak egy egységnyi dru el6dllitdsdhoz hany egységnyire van
sziikségiik a tobbi nyersanyagbdl, illetve hany egység a kiilsé igény.

Hatdrozza meg az el6allitott termékek mennyiségét lgy, hogy minden
igény ki legyen elégitve, és ne keletkezzen felesleg.

foldmiives allattenyészté banyasz kiils6 igény
novény 0.1 0.7 0.1 2
hus 0.2 0.1 0.3 3
szén 0.4 0.3 0.1 5
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8. feladat

Legyen A=pascal(10) (azaz A a 10 x 10-es Pascal matrix, ami egy
szimmetrikus, pozitiv definit matrix), x=ones(10,1) és definidlja a b
vektort gy, hogy b=A*x. Oldja meg az Ax = b rendszert az 1u, chol és
A\b utasitasokat alkalmazva (haszndljon ,,format long”-ot)!
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Ritka matrixok
A sparse fliggvény

> A=[-1.1002; 0020; 0-10

A =
-1.1000 0
0 0
0 -1.0000
0 0
>> S=gparse(4)
g =
1, -1.1000
(3,2) -1.0000
(2,3) 2.0000
1,4 2.0000
(3,4) 1.0000
(4,4) 3.0000

0
2.0000
0
0

1;0 0 0 3]

2.0000

0
1.0000
3.0000
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Definialjunk egy olyan 10 x 10-es ritka matrixot, melyben csak 5 atléban
vannak 0-tdl kiilonboz6 elemek:

>> d=ones(10,1);
>> S=spdiags([d d -4xd d d],[-4 -1 0 1 4],10,10);

Megnézhetjik a nemnulla elemek elhelyezkedését:

>> spy(S)

0 2 4 8 10

6
nz =40
A nemnulla elemek szdma: nnz(S)
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Hasonlitsuk ossze egy nagyméretii ritka matrix esetén a tdrigényt a
kiilonbozo tarolasi médok esetén:

>> d=ones (10000,1);

>> S=spdiags([d d -4*d d d],[-4000 -1 0 1 4000],10000,10000);
>> F=full(S);

>> whos S F

Vizsgaljuk meg egy matrix-vektor szorzds futasi idejét:

>> x=rand (10000,1);
>> tic;b=S*x;toc
>> tic;b=F*x;toc

és egy linedris egyenletrendszer megoldasanak futdsi idejét
gy gy g )

>> tic;y=F\b;toc
>> tic;y=S\b;toc
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Octave/Matlab alapok 2.
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Egy egyszer(i dbra

Példa
Rajzoltassuk ki a (—1,2), (0,1), (1,1.5), (2,3) pontokat a sikon! J

1. 1épés: Soroljuk fel egy valtozéban a pontok elsé koordinatait!
>> x=[-1, 0, 1, 2];

2. lépés: Soroljuk fel egy masik valtozéban a pontok masodik
koordindtdit!

>> y=[2, 1, 1.5, 3];

(Figyeljiink ra, hogy “tizedesvessz&" helyett “tizedespont” szerepel)

3. lépés: A plot fiiggvény segitségével rajzoltassuk ki a pontokat!

>> plot(x,y,'*")
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% kirajzolunk 4 pontot
x=[-1, 0, 1, 2];

y=[2, 1, 1.5, 3];
plot(x,y,'*")

28

26

24 r

22

o ¥

-1 -0.5 0.5 1 15 2
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Az elkésziilt programunkat konnyen mddosithatgatjuk. Pl.

% kirajzolunk 4 pontot
figure

x=[-1, 0, 1, 21;

y=[2, 1, 1.5, 31;
plot(x,y,'*")

axis([-1.5 2.5 0.5 3.5])

A figure utasitas hatdsara egy (j grafikus ablak nyilik. Ennek hidnyaban,
ha van megnyitott grafikus ablak, akkor abba késziti el az dbrat, annak
kordbbi tartalmat feliilirva.

Az axis bedllitja a tengelyek hatdrait.

A plot fuggvényrdl (ill. hasonléan barmely més beépitett fiiggvényrdl) a
parancsablakba a

>> help plot

utasitast gépelve tudhatunk meg tobbet.
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figure

plot(x,y,'*")

x=[-1, 0, 1, 2];
y=[2, 1, 1.5, 3];

% kirajzolunk 4 pontot

axis([-1.5 2.5 0.5 3.5])
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A plot fuggvény

@ plot(x,y)
abrazolja azokat a sikbeli pontokat, melyeknek els6 koordinatdja az x,
mdsodik az y valtozdban szerepel, és 0sszekoti Sket.

@ plot(x,y,’szin tipus’)
abrazolja a pontokat, a megadott tipust markerrel, illetve
vonaltipussal, a megadott szinnel.

Vonaltipusok

o - folyamatos vonal
(alapértelmezés)

@ : pontozott vonal
@ - - szaggatott vonal

@ -. szaggatott-pontozott vonal
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A plot fuggvény

Markerek
@ * csillag
@ o kor
@ + Osszeadds jel
@ x kereszt
@ s négyzet
@ d rombusz
@ p Otszog
@ h hatszog
@ < balra mutaté haromszog
@ > jobbra mutaté hdromszog
o A felfele mutaté haromszog
°

V lefele mutaté haromszog

Szinek

o b kék

@ r piros

e g zold

o k fekete

o w fehér

@ y sdrga

@ m magenta

@ ccian
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% kirajzolunk 4 pontot
figure

x=[-1, 0, 1, 2];

y=[2, 1, 1.5, 31;
plot(x,y)

axis([-1.5 2.5 0.5 3.5])

3.5

25
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% kirajzolunk 4 pontot
figure

x=[-1, 0, 1, 2];

y=[2, 1, 1.5, 31;
plot(x,y,'-.r*")
axis([-1.5 2.5 0.5 3.5])

3.5

25

0.5
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Fuggvények abrazoldsa

Rajzoltassuk ki az f(x) = sin(x) fiiggvényt a [0, 27] intervallumon!

Példa J

Fiiggvényeket lgy abrazolhatunk, hogy a fiiggvénygorbe nagyon sok
pontjat kirajzoltatjuk.

Vegyiink a [0, 2] intervallumon sok pontot, pl:
>> x=linspace(0,2*pi,50) ;

vagy

>> x=linspace(0,2*pi);

Az els6 esetben 50, a masodikban 100 egyforma |épéskozii pontot kapunk
a [0, 2] intervallumon.

Minden pontban szamitsuk ki a fliggvény értékét és rajzoltassuk ki a

pontokat!
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x=linspace(0,2*pi);
y=sin(x);
figure; plot(x,y)

04r 1

02r 1

0.2 1

04 i
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Az fplot fuggvény

figure;
fplot('sin', [0,2*pil)

08

06

0.4

02

0.2

041

-0.6

-0.8
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Példa
Rajzoltassuk ki az f(x) = =" 3X) fliggvényt a [0.1, 27] intervallumon! J

x=linspace(0.1,2%pi);
y=sin(3*x)./x;
figure; plot(x,y)
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A tengelyek poziciondldsa

graphics_toolkit gnuplot Jcsak Octave-ban
x=linspace(0.1,2xpi);

y=sin(3*x)./x;

figure; plot(x,y)

set(gca, 'xaxislocation', 'origin')

0 \/ A e
051
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graphics_toolkit gnuplot %csak Octave-ban
x=linspace(0.1,2%pi);

y=sin(3%x) ./x;

figure; plot(x,y)

set(gca, 'xaxislocation', 'origin')

box off

R e

Baran I-'\gnes Numerikus matematika

Labor

89 /212



graphics_toolkit gnuplot ’csak Octave-ban
x=linspace(0.1,2%pi);

y=sin(3%x) ./x;

figure; plot(x,y)

set(gca, 'xaxislocation', 'origin')

box off; grid on

A=
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Tobb fliggvény egy abran
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Tobb fuggvény egy dbran
x=linspace(0.1,2%pi);
y=sin(3*x)./x;

z=cos(x);

figure; plot(x,y,x,z)

vagy

x=linspace(0.1,2*xpi);
y=sin(3*x)./x;
z=cos (x) ;

figure; plot(x,y)
hold on;

plot(x,z)

hold off;

@ hold on
bekapcsolja a ,,rarajzold” lizemmddot: az aktuilis figure-ablakba
rajzol, az ottani eredeti dbra meghagyasaval

Baran Agnes Numerikus matematika Labor 92 /212



Tobb fliggvény egy abran, legend box

x=linspace(0.1,2%pi);
y=sin(3%x) ./x;

z=cos (x) ;

figure; plot(x,y,x,z)
legend('sin(3x)/x','cos(x)")

1 L L -
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Vonaltipus és szin megadasa

x=linspace(0.1,2%pi);

y=sin(3%x) ./x;

z=cos (x) ;

figure; plot(x,y,'k:',x,z, 'm--")
legend('sin(3x)/x','cos(x)")

3
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Cim, tengelyek, legendbox

Két figgvény
aF ! ! ; ! ! ! —

sin(3x)/x
0S(X) i

2]
T
I

y-tengely
|
/

051

x-tengely
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Cim, tengelyek, legendbox

x=linspace(0.1,2*pi);
y=sin(3*x)./x;

z=cos(x);

figure; plot(x,y,'k:',x,z,'m——")
axis([-0.1 4.1 -1.1 3.1]);
xlabel ('x-tengely')
ylabel('y-tengely');

title('Két fiiggvény');
legend('sin(3x)/x','cos(x)');

@ title(’az abra cime’)
az abra cime

e xlabel(’szdveg’) illetve ylabel (’szdveg’)
a tengelyek feliratozasa
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Néhany hasznos utasitas

@ axis tight
a tengelyek hatdrait ugy éllitja be, hogy az dbra kitoltse a dobozt

@ axis equal

minden tengelyen ugyanazt az egységet hasznidlja
@ axis square

egyforma hosszi tengelyeket haszndl
@ axis off

nem jeleniti meg a tengelyeket
@ box off

nem jelenik meg a doboz hatarolévonala
@ grid on

berdcsozza az abrat
@ close all

bezdr minden lathaté figure ablakot
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Példa
Abrézoljuk az f(x) = e* és g(x) = In(x) fiiggvényeket egy abran! J

graphics_toolkit gnuplot Y%csak Octave-ban
x1=linspace(-5,2); yl=exp(xl);
x2=linspace(0.01,7); y2=log(x2);

figure; plot(xl,yl,x2,y2);

set(gca, 'xaxislocation', 'origin')

set(gca, 'yaxislocation', 'origin')

axis equal; grid on;
legend('exp(x) ', 'In(x)"')
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Legkisebb négyzetes kozelitések
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1. feladat

Hatdrozza meg az aldbbi adatokra legkisebb négyzetes értelemben

legjobban illeszkedd egyenes egyenletét.

()t,-012

a

il3 33

(b)t,'Oll
1 2 3
|3 3 3 3
f,-\2122
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Legkisebb négyzetes kozelitések, polinom illesztése
Példa

Hatarozzuk meg az aldbbi adatokat legkisebb négyzetes értelemben
legjobban kozelité egyenest!

t,"l 1.1 11 12 13 14 15 16 17 18 19 2
1‘,-‘8 8.9 9 98 10 11 115 115 125 13 137 14

v

Megoldas. Hasznaljuk a polyfit fliggvényt!
p=polyfit(t,f,m)
megadja a (t;, ;) adatokra legkisebb négyzetes értelemben legjobban

illeszkedd legfeljebb m-edfoki polinom egylitthatdit a féegylitthatéval
kezdve.

>> t=[1 1.1 1.1:0.1:2];
>> f=[8 8.9 9 9.8 10 11 11.5 11.5 12.5 13 13.7 14];
>> p=polyfit(t,f,1)
p=
5.8235 2.5338
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A keresett egyenes egyenlete:

f(t) =5.8235¢ + 2.5338
Ha 4brazolni szeretnénk az adatokat és az illesztett egyenest:
>> xx=linspace(0.9,2.1);

>> yy=polyval(p,xx);
>> figure; plot(t,f,'*',xx,yy)

A polyval fliggvény a p egyiitthatdju polinom értékeit adja az xx-ben
adott helyeken.
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2. feladat

Hatdrozzuk meg az alabbi adatokat legkisebb négyzetes értelemben

legjobban kozelité masodfoki polinomot!
t,-|2.1 22 23 23 25 26 28 29

fil25 2 25 27 3 4 54 7

L + L L L L L L L
2 21 22 23 24 25 26 2.7 28 29 3
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Legkisebb négyzetes kozelitések

Példa

Hatarozzuk meg az aldbbi adatokat legkisebb négyzetes értelemben
legjobban kozelitd

F(t) = x1 + x cos(mt) + x3 sin(rt)

alaktd modell paramétereit!

|01 05 12 15 2 21 24 3 32
;139 26 -08 03 32 38 32 -07 -09

Megoldas. A paramétereket az
ATAx = ATf
Gauss-féle normalegyenlet megoldasa szolgiltatja.
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ATAx = ATF

ahol
1 cos(rmty) sin(wty) f
1 cos(wtp) sin(wt; f; X1
: : X3
1 cos(mtg) sin(7tg) fo

Allitsuk el a megadott adatokbdl az A matrixot:

>> t=[0.1 0.51.21.522.12.43 3.2]"';
>> f=[3.9 2.6 -0.8 0.3 3.2 3.8 3.2 -0.7 -0.9]"';
>> A=[ones(9,1), cos(pixt), sin(pixt)];

Ugyeljijnk ra, hogy a t és az f oszlopvektor legyen!
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Oldjuk meg a normalegyenletet!

>> x=(A'*A)\ (A'*f)
X —3

1.4372
2.0310
1.1711

A legjobban illeszked6 adott alaki modell tehat:

F(t) = 1.4372 + 2.0310 cos(t) + 1.1711sin(rt)

Abrazoljuk az adatokat és az illesztett modellt!

>> xx=linspace(0,3.3);
>> yy=x(1)+x(2) *cos (pi*xx) +x(3) *sin(pi*xx) ;
>> figure; plot(t,f,'*',xx,yy)
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t=[0.1 0.5 1.2 1.5 2 2.1 2.4 3 3.2]"';
f=[3.9 2.6 -0.8 0.3 3.2 3.8 3.2 -0.7 -0.9]"';
A=[ones(9,1), cos(pix*t), sin(pix*t)];
x=(A"*A)\(A'*f);

xx=linspace(0,3.3);
yy=x(1)+x(2) *cos (pi*xx)+x(3)*sin(pi*xx) ;
figure; plot(t,f,'*',xx,yy)
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Feladatok

(3) Hatarozza meg az aldbbi adatokat négyzetesen legjobban kozelité
egyenes egyenletét!

| 1 12 14 14 15 1.7 19 2
il62 7 8 79 84 92 10 106

(4) Hatdrozza meg az aldbbi adatokat négyzetesen legjobban kozelité
harmadfokd polinomot!
t;‘0.5 08 11 13 15 17 19 21 2.3
fil25 23 18 13 09 04 01 -005 -0.01

(5) Hatdrozza meg az aldbbi adatokat legjobban kozelitd

F(t):a—i—?

alaki modell paramétereit!
ti \ 1 12 14 14 15 17 19 2 21 22
f; ‘ 42 38 34 33 33 3 28 28 275 27

v
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Feladatok

(6) Hatdrozza meg az aldbbi adatokat négyzetesen legjobban kozelité
F(t) = xisin(t) + xzsin(2t) + x3 sin(3t)

alaki modell paramétereit!

0.5 1.2 1.5 2 2.1 2.4 3 3.2 3.4 3.8 4 4.2 4.6

5

4.1 g 1 -1.5 -1.6 -1.7 -0.4 0.1 0.7 1.6 1.8 1.6 0.2 -2.5
(7) Hatarozza meg az aldbbi adatokat négyzetesen legjobban kozelité
F(t) = x1 + x2In(t)
alaktd modell paramétereit!
ti ‘ 01 05 12 15 2 21 24 3 32
f;-06 15 25 29 32 33 35 38 39
Labor  111/212



8. feladat

Egy fél méter magas, téglatest alaki viztartalyt egyenletes sebességgel
toltenek fel vizzel. Amikor a tartdlyban 3 cm magasan all a viz Péter
elhatdrozza, hogy megméri a vizszint valtozasat az ido fuggvényében. A
kovetkez6 méréseket végezte:

ti(min) [0|2]4] 6] 8[10]12
fi(cm) [3]4]5|55]65| 7] 8
Becsiilje meg milyen magasan lesz a viz 20 perccel azutdn, hogy Péter

elinditotta a mérést! Mikor inditottak el a tartaly feltoltését? Kb mikor
lesz tele a tartaly?

Baran Agnes Numerikus matematika Labor 112 /212



9. feladat

Egy ipari mérlegen egy nagyobb mennyiségli gabona van, amit valaki
egyenletes sebességgel lapatol a mérlegrdl zsdkokba. Miutan elkezdte a
munkat, idonként megnézziik mennyit mutat a mérleg. Az alabbi értékeket
lattuk:

ids (min) | 1 15 20 28
tomeg (kg) | 980 605 470 250

Becsiiljik meg mennyi ideig tart, amig az osszes gabondt zsdkokba rakja,
illetve eredetileg mennyi gabona volt a mérlegen.
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Interpolacio
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Lagrange-interpolacio

Példa

Hatdrozzuk meg a (—2,-5),(—1,3),(0, 1), (2,15) pontokra illeszked
minimalis fokszamu polinomot!

Megoldas. Készitsiik el az osztott differencidk tdblazatat!
Az els6 két oszlopba az alappontok és a megfelel6 fuggvényértékek
keriilnek:

-2 | -5
-1 3
0 1
2| 15
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Szamitsuk ki az elsérend(i osztott differencidkat!

2| -5
3(5) _
T2 =8
“1] 3
1-3  __
0—(-1) — —2
0| 1
15-1 __
2—-0
2| 15
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Szamitsuk ki a masodrend(i osztott differencidkat!

—2| -5
8
—2-8 __
~1| 3 g =-5
—2
7-(-2) _
0| 1 =3
7
2| 15
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Szamitsuk ki a harmadrendi(i osztott differenciat!

-2 | =5
8
-1 3 -5
= EEge
0 1 3
7
21 15
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A tabldzat felsd élét haszndlva irjuk fel a polinomot!

-2 | -5
8
-1 3 -5
-2 2
0 1 3
7
2| 15

L3(x) = —54+8(x +2)-5(x+2)(x+ 1)+ 2(x +2)(x + 1)x
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Megj.:

A Lagrange-polinom nem fiigg az adatok sorrendjétdl, igy valaszthattuk
volna a tablazat alsé élét is:

-2 | -5
8
-1 3 -5
-2 2
0 1 3
7
2| 15

L3(x) =154+ 7(x —2) + 3(x — 2)x + 2(x — 2)x(x + 1)

Mindkét esetben
L3(x) = 2x> +x* = 3x + 1
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Lagrange-interpolacio
1. feladat

Irja fel az alabbi pontokra illeszkedé minimalis fokszamd polinomot!

(a) (=3,-6), (—2,—17), (—1,-8), (1,-2), (2,19),

(b) (=3,-31), (=2,-8), (1,1), (2,24),

(€) (=2,-13), (=1,-4). (1,2),

(d) (-2,-5), (-1 3) (0,1), (2,15),

(e) (=1,4). (1,2), (2,10). (3,40),

(f) (=2,38), (=1,5), (1,-1), (2,-10), (3,-7),
) (=

2
(g) (=2,-33), (=1, -2), (1,6), (2,7), (3,-18).

2. feladat

Horner-algoritmussal hatdrozza meg a p(—3) értéket, ha

p(x) = —x®+3x> —4x> —3x +5
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Lagrange-interpolacié Octave/Matlab-bal

A polyfit fliggvény

polyfit(x,f,n-1) Ha x és f n-elemi vektorok, akkor megadja annak a
legfeljebb (n — 1)-edfokd polinomnak az egyiitthatdit, amely illeszkedik az
(xi, ), i=1,...,n adatokra.

Példa

Hatarozzuk meg a (—2,—5),(—1,3),(0,1),(2,15) pontokra illeszked
minimalis fokszamu polinomot!

Megoldas.

>>x=[-2, -1, 0, 2];
>>f=[-5, 3, 1, 15];
>>p=polyfit(x,f,3)
p=
2.0000 1.0000 -3.0000 1.0000
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Abrézoljuk a pontokat és az illesztett fliggvényt!

x=[-2, -1, 0, 2];

f=[-5, 3, 1, 15];
p=polyfit(x,f,3);
xx=linspace(-2.5,2.5);
yy=polyval(p,xx) ;

figure; plot(x,f,'*',xx,yy)

A polyval fliggvény:
yy=polyval(p,xx) ;

a p egyutthatdjd polinom értékeit adja az xx vektor koordinataiban.
(p-ben a polinom egyiitthatdi a féegyiitthatéval kezdve szerepelnek)
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x=[-2, -1, 0, 2];

t=[-5, 3, 1, 15];
p=polyfit(x,f,3);
xx=linspace(-2.5,2.5);
yy=polyval(p,xx) ;

figure; plot(x,f,'*',xx,yy)

40

30

20 -
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Fontos! Ha a polyfit fiiggvényben nem megfelelGen irjuk el6 a polinom
fokszamat, akkor a polinom nem feltétleniil illeszkedik az adatokra.

x=[-1 01 2 3]; £=[-10 -4 -1 0 4]; p=polyfit(x,f,2);

xx=linspace(-1.2,3.2); ff=polyval(p,xx);

figure; plot(x,f,'*',xx,ff)

.
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3. feladat

Kozelitse az
f(x) = e —sin(mx)

fliggvényt a [0, 1] intervallumon egy masodfokd polinommal. Abrézolja az
eredeti és az illesztett fliggvényt kozos dbran.

4. feladat

Tudjuk, hogy egy test méterben szamolva sp utat tett meg, egyenletes vy
(m/s) sebességgel, majd ezutdn egyenletesen gyorsitani kezdett a (m/s?)
gyorsuldssal. A gyorsulds kezdetétdl szamitva a 2., 4. és 5. mdsodperc
végén az 0sszes megtett Ut rendre 16, 38 és 52 m. Hatdrozza meg sp, vo
és a értékét.
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5. feladat
Rajzoltassuk ki kozos abrira az alabbi 3 fliggvényt:

@ az

1
M= 135%a
fliggvényt a [—1, 1] intervallumon
e az f fliggvény
-1,-0.8,-0.6,...,0.6,0.8,1
egyenld 1épéskozii (ekvidisztans) alappontokhoz tartozd
Lagrange-polinomjat

o az f fiiggvény

2k —1
xk:cos( w), k=1,2,...,11

22

alappontokhoz (Csebisev-pontok) tartozé Lagrange-polinomjat.
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f
ekvidisztans pontok
Csebisev-pontok
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Hermite-interpolacid

Példa

Hatdrozzuk meg az alabbi adatokra illeszkedé minimdlis fokszamdu
polinomot!

X; 2| -1| 1
f(X,‘) —10 —2
f(x) | =20 | 10| 10
F7(x;) ~16

Megoldas. Az illeszkedési feltételek szama: m =7, igy az
Hermite-polinom legfeljebb 6-odfokd lesz.

Készitsiik el az osztott differencidk tablazatat!
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A kiindulé adatok:
Xi -2 -1 1
fli) | —10 | —2
f(x;) | —20 | 10 | 10

f”(X,') —16
-2 | —-10
—20
-2 | -10
-1 =2
10
-1| -2 —8
10
-1] =2
1 2
10
1 2
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Szamoljuk ki a hidnyzd értékeket!

-2 | —-10
—-20

-2 | —-10

-1 -2
10

-1 -2 —8

10

-1 -2

1 2
10

1 2
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A hidnyzé els6rendii osztott differencidk:

-2 | —-10
—20

-2 | —-10
8

-1 -2
10

-1 -2 —8

10

-1 -2
2

1 2
10

1 2
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A hidnyzé masodrendii osztott differencidk:

-2 | —-10
—20
-2 | —-10 28
8
-1 -2 2
10
-1 -2 —8
10
-1 -2 —4
2
1 2 4
10
1 2
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A harmadrend( osztott differencidk:

-2 | -10
—20
-2 | —-10 28
8 —26
-1 -2 2
10 —10
-1 -2 —8
10 2
-1 -2 —4
2 4
1 2 4
10
1 2
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A negyedrendii osztott differencidk:

-2 | —-10
—20
-2 | —-10 28
8 —26
-1 -2 2 16
10 —-10
-1 -2 -8 4
10 2
-1 -2 —4 1
2 4
1 2 4
10
1 2
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Az otodrendll osztott differencidk:

-2 | -10
—20
-2 | —-10 28
8 —26
-1 -2 2 16
10 —10 —4
-1 -2 -8 4
10 2 -1
-1 -2 —4 1
2 4
1 2 4
10
1 2
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A hatodrendli osztott differencia:

-2 | -10
—20
-2 | —-10 28
8 —26
-1 -2 2 16
10 —10 —4
-1 -2 -8 4 1
10 2 -1
-1 -2 —4 1
2 4
1 2 4
10
1 2
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-2 | -10
—20
-2 | -10 28
8 —26
-1| =2 2 16
10 —10 —4
-1| -2 -8 4 1
10 2 -1
-1| -2 —4 1
2 4
1 2 4
10
1 2

H(x) =—10 — 20(x + 2) 4 28(x + 2)>—26(x + 2)*(x + 1)
+16(x + 2)3(x + 1)>—4(x +2)*(x + 1)3
+1(x +2)%(x+1)3(x — 1)
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4. feladat

Hatdrozza meg az aldbbi adatokra illeszkedé minimalis fokszamu

polinomot!
X -1 1 2 X —2 -1 1
(a)  f(x) 41 6| 9 (b) f(xi) 13 31 7
fi(x) | 917|213 fi(x) | —31 | 14|18
" (x;) —40 )
6. feladat

irja fel az f(x) = cos(x) — 3x fiiggvény xo = O-beli érint6jének az

egyenletét!
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7. feladat

Az dbran lathatd két dtszakasz (Leis ut, Felis at) egymashoz kozelebbi
végei kozott szeretnénk utat épiteni lgy, hogy az igy kapott Uit menetében
ne legyen torés. Adja meg a hidnyzé ltszakasz nyomvonalat leiré
fuggvényt!
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Spline interpolacié Octave/Matlab-bal

Példa

Hatdrozzuk meg az alabbi adatokhoz tartozé harmadfoki spline-t!
xi||—2|-110]1| 2|3
S 4 1714|1219
S"| 15 8

Megoldas. Haszniljuk a spline fiiggvényt!

p=spline(x,y)

El6allitja a szakaszonként harmadfokd spline egyiitthatéit. Itt x az
alappontok vektora, az y vektor elsé és utolsé koordinatdja a két
végpontban adott derivaltérték, a tobbi koordinata a fliggvényértékek.
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>>x=-2:3; y=[154 1 7 4 12 9 8]; p=spline(x,y)
p =
scalar structure containing the fields:
form = pp
breaks =
-2 -1 0 1 2 3

coefs =
19.0000 -37.0000 15.0000 4.0000
-12.0000 20.0000 -2.0000 1.0000
11.0000 -16.0000 2.0000 7.0000
-12.0000 17.0000 3.0000 4.0000
15.0000 -19.0000 1.0000 12.0000

pieces = b5
order = 4
dim = 1

A spline egyiitthatdi: p.coefs
~ BaranAgnes | Numerikus matematika |
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Figyeljiink arra, hogy a polinomok egyiitthatdit a részintervallumok
kezdopontjaihoz viszonyitva kapjuk!

Az 5 illesztett polinom:

pi(x) =

p2(x) =
p3(x) =
pa(x) =

ps(x) =

19(x 4+2)% = 37(x +2)? + 15(x +2) + 4
—12(x+ 13 +20(x +1)? —2(x + 1) +1
11x3 —16x2 +2x + 7
—12(x—1)34+17(x —1)2 +3(x — 1) + 4
15(x —2)3 —19(x — 2)2 + (x —2) + 12

Ellendrizzik az illeszkedési feltételeket!
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Ha nem az egyutthatdkat szeretnénk tudni, hanem a spline értékét
valamely pont(ok)ban, akkor

yy=spline(x,y,xx)

ahol x és y az el6bbi vektorok, xx azon pontok vektora, ahol a
helyettesitési értéket keressuk. Ekkor yy-ba keriilnek a kiszamolt
fuggvényértékek.

>> x=-2:3;

>> y=[154 17 4 12 9 8];

>> xx=linspace(-2.1,3.1);

>> yy=spline(x,y,xx);

>> plot(x,y(2:end-1),'*',xx,yy)
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x=-2:3;

y=[16 4 17 4 12 9 8];
xx=linspace(-2.1,3.1);
yy=spline(x,y,xx);
plot(x,y(2:end-1),'*',xx,yy)

Az igy kapott fluggvény teljesiti az illeszkedési feltételeket, és az elsé két
derivéltja folytonos.
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Megjegyzés

Ha a spline fliggvényt olyan x és y vektorokkal hivjuk, amelyek
ugyanannyi koordinatat tartalmaznak, akkor a hidnyzé két feltételt az
Octave/Matlab azzal helyettesiti, hogy az elsé és utols6 két
részintervallum taldlkozdsanal a harmadik derivaltat is folytonosnak tekinti.

x=-2:3;

y=[4 17 4 12 9];
xx=linspace(-2.1,3.1);
yy=spline(x,y,xx);
plot(x,y,'*',xx,yy)
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x=-2:3;
y=[4 17 4 12 9];

xx=linspace(-2.1,3.1);
yy=spline(x,y,xx);
plot(x,y,'*',xx,yy)

I
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8. feladat
Rajzoltassuk ki kozos abran az alabbi 3 fliggvényt:

@ az

1
=1
flggvényt a [—1, 1] intervallumon
e az f fiiggvény
~1,-0.8,-0.6,...,0.6,0.8, 1
egyenld |épéskozii (ekvidisztans) alappontokhoz tartozd
Lagrange-polinomjat
e az f fliggvény
-1,-0.8,-0.6,...,0.6,0.8,1

alappontokhoz tartozé harmadfokd spline polinomjat. (A
végpontokban a derivaltértékeket tekintsiik 0-nak.)
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Baran A’gnes




9. feladat

Az abran ldthaté csiszda csiszéfeliiletét szeretnénk elkésziteni két
darabbdl Ggy, hogy az A és C helyeken siman csatlakozzon a vizszintes
felliletekhez, illetve a két lemez is minél simabban csatlakozzon egymashoz
B-ben. frja fel azt a fuggvényt, ami a csiszéfeliilet lefutdsat modellezi!

Baran Agnes Numerikus matematika Labor 150/ 212



10. feladat (szorgalmi)

Készitse el Octave-val az dbran lthaté rajzot.
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Utmutatas: hasznilja a bejeldlt (egész koordindtajd) pontokat és a
spline fliggvényt.
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Numerikus integralas
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Anonim fuggvények, function handle

Flggvényeket definidlhatunk parancssorban is:

>> f1= @(x) x.*sin(x);

llyen médon az f1(x) = xsin(x) fliggvényt definidltuk, hivisa pl.:
>> y=f1(pi/4)

y’_
0.5554

A @ szimbdlum utan zardjelben szerepelnek a fiiggvény valtozdi (most x),
ezt koveti a fliggvény (ez egy d.n. anonim fiiggvény). Az = baloldaldn
szerepld véltozd (most f1) egy u.n. ,,function handle” tipusi véltozé lesz.
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Akar tobbvaltozés fiiggvényeket is megadhatunk igy:
>> £2= Q(x,y) x.72+x.*y-y+3;
Ekkor pl.

>> z=f2(2,-1)
z=
6

A function handle tarolja azon valtozdk értékét is, amelyek sziikségesek a
fuggvény kiértékeléséhez:
>> a=2.5; b=3;
>> 3= @(x) a*sin(x)+b*cos(x);
>> y=£3(-4)
y=
-0.0689
>> clear a b
>> y=£3(-4)
y=
-0.0689
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1. feladat

Egészitse ki az aldbbi kddrészletet tigy, hogy I az f fliggvény [a, b]
intervallum feletti hatdrozott integraljanak kozelitése legyen

(a) Osszetett trapéz-képlettel,
(b) Osszetett Simpson-képlettel,
dagy, hogy az [a.b] intervallumot m részre osztjuk.

function I=myinteg(a,b,m)

f=0(x)

end
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2. feladat

Az el6z6 kédok segitségével kozelitse az

1
2
/exdx
0

integral értékét m = 3,6, 12 esetén.
Becsiilje meg hany részintervallumra van sziikség, ha ¢ = 1073
pontossaggal szeretnénk tudni az integral értékét.
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Numerikus integralds Octave-val
Egyvéltozds fliggvények integralasara pl a quad fuggvényt hasznalhatjuk.

Példa
Octave segitségével szamitsuk ki az

3
/X\/l + xdx
0

integrdl értékét!

Megoldas.

>> f= Q@(x) x.*sqrt(1+x);
>> quad(£,0,3)
ans=

7.7333
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A quad fliggvény hivasa:
>> quad(fv,xmin,xmax)

ahol fv az integraland6 fiiggvény (fv egy function handle tipusd valtozo,
vagy egy sztring, mely egy fiiggvény neve), xmin és xmax az alsé és felsd
hatar.

A quad fiiggvény az fv fiiggvényt vektor argumentummal fogja
meghivni. Figyeljiink ra, hogy az fv ennek megfeleléen legyen
megadva (elemenkénti operatorok!).

A quad fiiggvény Gauss-kvadratirat haszndl (egy olyan interpolaciés
kvadrattraképlet, melynek alappontjai nem ekvidisztansak, hanem
bizonyos polinomok zérushelyei), és alapértelmezésként 10~ abszolit, és
1078 relativ hibaval szamitja ki az integral értékét.

A hibahatdrok atallithatéak:
>> quad(f,0,3,[1le-10 1e-10])

A vektor els6 eleme az abszolit, masodik a relativ hiba.
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Az el6z6 példdban nem feltétleniil sziikséges létrehozni a £ valtozét:

>> quad(@(x) x.*sqrt(1+x),0,3)

Ha a fliggvényt korabban egy m-fajlban definidltuk, pl.

function y=myfnc(x)
y=x.*sqrt (1+x)
end

akkor a quad fliggvénynek dtadhatjuk a fiiggvény nevét is (function
handle-ként, vagy sztringként):

>> quad(@myfnc,0,3)

vagy

>> quad('myfnc',0,3)

Hasonlé a helyzet az Octave beépitett fiiggvényeivel:
>> quad(@sin,0,pi)

>> quad('sin',0,pi)
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Impropius integralok

@ Az integralds hatdrai lehetnek —oo és oo is:
>> f= 0(x) exp(-x);
>> quad(f,0,inf)
ans = 1.0000

@ Az sem probléma, ha a fliggvény az intervallum végpontjaiban nincs
értelmezve:
>> f= 0(x) 1./sqrt(1-x.72);
>> quad(f,-1,1)
ans=
3.1416
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Ha nem ismert a fuggvény

El6fordulhat, hogy nem ismeriink egzakt képletet az integrdlandé
fuggvényre, csak bizonyos pontokban ismerjik az értékeit. Ilyenkor a
trapz Octave-fliggvényt hasznalhatjuk.

Példa

Egy jarmi sebességét 1 percen keresziil mértiik 5 masodperces
idokozonként:
t (sec) ‘ 0 5 10 15 20 25 30 35 40 45 50 55

60

v(m/sec)| 22 28 3 3 27 25 24 29 33 35 35 33

Becsiiljik meg a jarmi altal megtett utat!

Megoldas. Tudjuk, hogy az a id6 alatt megtett ut:

Sz/av(t)dt
0
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A trapz fuggvény segitségével az integral becslése

>> x=0:5:60;
>> f=[ 2.2 2.8332.72.562.42.93.33.53.53.33];
>> trapz(x,f)
ans =
177.5000

>> y=cumtrapz(x,f);

Ekkor

y = (0,12.5,27,42,56.25,69.25, 81.5,94.75, 110.25, 127.25, 144.75, 161.75, 177.5)

Az y vektor j-edik koordindtdja az i-edik idopillanatig megtett utat
mutatja.
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3. feladat

Octave segitségével szamitsa ki az alabbi hatarozott integralok értékét!

()

/2
/xsin(xz)dx
—7/2
(b) ~
1 2
2
/\/27re X

1
/ V1 — x2dx
-1
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4. feladat

Kozelitse az
10

/xsin(5x)dx
0

integrélt a quad fiiggvénnyel, illetve a trapz fliggvénnyel Ggy, hogy
alappontoknak az

@ xi=0:10 pontokat
@ xi=[0 0.5:9.5 10] pontokat

vélasztja. Prébalja megmagyarazni a tapasztalt jelenséget (dbrazolja az
integralandé fliiggvényt a megadott intervallum felett). Novelje az
alappontok szdmat a trapz fiiggvény esetén.
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Feltuletek abrazoldsa Octave-ban

Ha egy kétvaltozéds fiiggvényt az [a, b] x [c, d] tartomdny felett szeretnénk
abrazolni, akkor vegyiink fel osztépontokat az [a, b] és [c, d]
intervallumban és a meshgrid fuiggvény segitségével készitsiik el az ezek
altal meghatdrozott racspontokat. A racspontokban szamitsuk ki az
abrazolni kivant fliggvény értékeit és dbrazoljuk a mesh vagy surf
fuggvények segitségével.

Példa a rdcs elddllitdsdra:
Ha a tartomany [0, 15] x [0, 10], akkor

>> x=0:15; y=0:10;
>> [X,Y]=meshgrid(x,y);

Ekkor X és Y is 11 x 16-os matrix.
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>> x=0:15; y=0:10;
>> [X,Y]=meshgrid(x,y);

Ekkor X és Y is 11 x 16-0s matrix:

01 14 15 0 0 0 0

01 ... 14 15 1 1 1 1
X — Y =

01 ... 14 15 10 10 10 10

(Az X és Y matrixokat ,,egymdsra helyezve" megkapjuk az dsszes

lehetséges (x;, ;) part)
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Feltuletek abrazoldsa Octave-ban
Példa

Abrazoljuk az

F(x,y) = xe~ 04+

fliggvényt a T = [-2,2] x [—1, 1] tartomdny felett!

Megoldas.
Vegyiink fel sok pontot a [—2,2] és a [—1, 1] intervallumban!

>> x=linspace(-2,2);
>> y=linspace(-1,1);

“Réacsozzuk be" a tartomanyt!

>> [xx,yy] = meshgrid(x,y);

Szamitsuk ki a racspontokban a flggvény értékét!
>> zz = xx.*exp(-xx. 2-yy. 2);
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Feltuletek abrazoldsa Octave-ban

x=linspace(-2,2);
y=linspace(-1,1);

[xx,yy] = meshgrid(x,y);

zz = xx.*exp(-xx.72-yy."2);
figure; mesh(xx,yy,zz)
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Kétvaltozds fliggvények numerikus integrdldsa Octave-val
Hasznaljuk a dblquad fiiggvényt!

Példa
Szamitsuk ki a

2 1
//xe_XZ_y2dydx
Z251

integral értékét!

Megoldas.

>> f= 0(x,y) x.*exp(-x.72-y."2)
>> dblquad(f,-2,2,-1,1)
ans= 3.1812e-19

Megjegyzés: Az integral kiszamitdsa dblquad fliggvénnyel bizonyos
esetekben sok idot vehet igénybe.
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5. feladat

Szamitsa ki a kovetkezd integralok értékét!

()

w/4 0

//2ysinxcos2xdydx

0 —7/3

(o e o] 1 A
/ /— -5 dxdy
27
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Nemlinearis egyenletek
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1. feladat

Egészitse ki a lent adott Octave-fiiggvényt ligy, hogy az f fliggvény

[a, b]-beli gyokének felez6-mddszerrel torténd e pontossagl kozelitését és
az ehhez sziikséges |épésszamot adja vissza (ha f(a) - f(b) < 0). maxit az
elvégzett |épések szamanak maximumat jeloli.

function [x,k]=felezo(a,b,e,maxit)
f=0(x)
if f(a)*f(b)>0

error(' ... ')
end

end
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2. feladat

Tesztelje az el6z6 kédjat az alabbi fliggvényekkel:
(a) f(x) =x>—3x—2a[0,3] intervallumon
(b) f(x) = x3—3x+2 a [0,3] intervallumon

3. feladat
Az el6z6 kéd mintdjara irjon egy kddot, mely hdrmddszerrel kozeliti a
fuggvény gyokét.
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4. feladat

irjon egy Octave-fliggvényt, mely megadott xp kezdépont, maxit
maximalis iterdciészdm, € pontossag esetén egy adott f fuggvény gyokét
kozeliti Newton-médszerrel, a gyok kozelitésével és az elvégzett iterdcidk
szamaval tér vissza, illetve ha az algoritmus nem konvergal, vagy egy
Newton-lépés nem definidlt, akkor a megfelelé hibalizenettel.

5. feladat

Az el6z8 fliggvénnyel kozelitse a 2. feladat (a) és (b) részében megadott
fuggvények gyokeit az xg = 1.5 kezd6pontbdl indulva. Hasonlitsa Gssze az
elvégzett 1épések szamat a két f fliggvény esetén. Hasonlitsa Ossze a
|épésszamot a felezs-, illetve hiirmddszer esetén sziikséges |épésszamokkal
is. Magyardzza meg a tapasztalt jelenséget!

6. feladat

Alkalmazzuk a Newton-médszert az f(x) = x> — 5x fiiggvény gyokének
kozelitésére az xg = 1 pontbdl indulva!l
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7. feladat

Kozelitse v/5 értékét Newton-médszerrel.

8. feladat

Mutassa meg, hogy az 3x3 — 12x + 4 = 0 egyenletnek van gyoke a [0, 1]
intervallumban. Vizsgélja meg az xo € [0, 1],

3x2 + 4
Xkp1 = k12 . k=0,1,...

eljaras konvergenciajat! frjon egy Octave-kédot, amely kiszdmolja az
iterdcid els6 néhany Iépését! Mddositsa a kddot gy, hogy olyan k értékre
alljon le, amelyre |xx — xk_1| < &, ahol € > 0 adott.

9. feladat

Mit mondhatunk az xo € [-7/2,7/2], xk41 = %cos(xk) eljarés
konvergenciajardl?

v
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10. feladat
Tekintsuk a

—4x; +cos(2x;1 —x2) = 3
—3xp +sinxy = 2 X1, X2 € [—m, 7]

egyenletrendszert. Mit mondhatunk az egyenletrendszer
megoldhatésagardl, illetve az

3 1
ka—H) = 3171 cos(2x1(k) - X2(k))
x2(k+1) = 2 + E sin x{k)

3 3

(k=0,1,2,...) eljaras konvergencidjarol?
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11. feladat

Prébélja meg az
xe¥ —1=0, x¢€]0.25,1]

egyenlet gyokét az
X0 = 0.5, Xk+1 = g(Xk), k = 0, ]., e

fixpont-iteracidval kozeliteni tgy, hogy
(a) g(x) =e”
(b) g(x) = 1%

(c) g(x) =x+1—xe*
Mit tapasztal?

X
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12. feladat

Ilrjon egy Octave-fiiggvényt, mely egy adott g : R” — R" fliggvény esetén
a g(x) = x egyenlet gyokét kozeliti fixpont-iteraciéval. A fliggvény
bemens paraméterei a kezdovektor, a pontossdg és a maximalis
iteraciészam legyenek.

13. feladat
Kozelitse a 10. feladatban adott egyenletrendszer gyokét az el6z6 koéddal.

v

14. feladat

Kozelitse az
X1 0.1x2 + 0.1x3 + 0.1x3
X2 = 0.1x1 + 0.1x, + 0.1x3
X3 0.1x3x0x3 + 0.3

egyenletrendszer [0, 1] x [0, 1] x [0, 2]-beli gyokét fixpont—iteraciéval!
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Nemlinearis egyenletek megolddsa Octave-val

Példaul az fsolve fuggvényt hasznalhatjuk.
[xopt,fopt] = fsolve(F,x0)

Az F(x) = 0 egyenlet gyokét kozeliti az x0 kezd6értékbdl indulva, ahol F
akar egy tobbvaltozds fliggvény is lehet.

xopt : a gyok kozelitése,
fopt : a fuggvény értéke xopt-ban
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Példa J

Kozelitsiik a cos(x) = 3x egyenlet megoldasat az fsolve segitségével.

[rjuk &t az egyenletet F(x) = 0 alakba:
cos(x) —3x =0.
Hivjuk meg az fsolve fiiggvényt pl xg = 0 kezd6értékkel.

>> F=0(x) cos(x)-3*x;

>> [xopt,foptl=fsolve(F,0)
xopt = 0.31675

fopt = -2.8390e-09
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Példa

Kozelitsik a 10. feladatban adott egyenletrendszer megoldasat az fsolve
segitségével.

>> F=0(x) [-4*x(1)+cos(2*x(1)-x(2))-3; -3*x(2)+sin(x(1))-2];
>> [xopt,fopt]l=fsolve(F,[0;0])
xopt =

-0.50406
-0.82766

fopt =
-3.9646e-09

3.1555e-10
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Polinomok gyokeinek kozelitésére a roots fliggvényt hasznalhatjuk:
r=roots (p)

ahol a p vektorban a polinom egyiitthatdéit kell felsorolni a féegylitthatdval
kezdve.

Példa
Kozelitsiik a p(x) = 2x3 — x 4 1 polinom gydkeit. J

>> p=[2 0 -1 1]
>> r=roots(p)
r=

-1.00000 + 0.00000i
0.50000 + 0.50000i
0.50000 - 0.500001
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15. feladat
(a

(b) Kozelitse a 3x3 — 12x + 4 = 0 egyenlet gyokeit!

Kozelitse a 3x = cos(x) egyenlet gyokeit!

c) Kozelitse az e* = sin(x) egyenlet gyokeit!

)
)
(c)
(d) Kozelitse az In(x) = 2 — x egyenlet gyokét!
)
)

(e) Kozelitse a cos?(x) + 2sin(x) = 2 egyenlet gyokét!
(

f) Kozelitse az x* — x3 — 2x?> — 2x 4+ 4 = 0 egyenlet gyokeit!

16. feladat

Kozelitse az alabbi egyenletrendszer gydkét a [—1,1]? tartomanyon.

Sin(Xl aF 2X2) +x1x0 =0
cos(xp — 1) —sin(xy) =0
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Optimalizalas
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Egyviéltozos fliggvények minimalizdlasa Octave-val

Az fminbnd fiiggvény:
[xopt,fopt]=fminbnd(f,a,b)

Az f fuggvény [a, b] intervallumbeli lokdlis minimumhelyének kozelitését
adja.

xopt: a lokalis minimumhely kozelitése

fopt: a fliggvény értéke az xopt helyen

Példa

Keressiik meg az f(x) = v/x — 2sin(x) fliggvény [0, 7]-beli minimumhelyét.J

f=0(x) sqrt(x)-2*sin(x);
[xopt,fopt]=fminbnd(f,0,pi)
xopt = 1.3543
fopt = -0.78957
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Az fminsearch és fminunc fiiggvények:

o [xopt,fopt]l=fminsearch(f,x0)
o [xopt,fopt]=fminunc(f,x0)

Az f fuggvény lokalis minimumhelyének kozelitését adja az x0
kezd6pontbdl indulva.

Mindkett6 alkalmas tobbvaltozds fliggvények minimalizéldsara is.

£f=0(x) sqrt(x)-2*sin(x);
[xopt,fopt]=fminsearch(f,0.5)
xopt = 1.3542
fopt = -0.78957
xopt,fopt]=fminunc(£f,0.5)
xopt = 1.3543
fopt = -0.78957
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1. feladat
(a) Hatédrozza meg az f(x) = x2 + cos(3x) fiiggvény Ssszes [0, 6]
intervallumbeli lokdlis minimumhelyét.

(b) Hatdrozza meg az f(x) = x2 + cos(3x) fiiggvény dsszes [0, 6]
intervallumbeli lokalis maximumhelyét.

2. feladat

(a) Hatdrozza meg az f(x) = sin(2x)sin(3x) fliggvény Osszes [0, 5]
intervallumbeli lokalis minimumhelyét.

(b) Hatdrozza meg az f(x) = sin(2x)sin(3x) fliggvény osszes [0, 5]
intervallumbeli lokalis maximumhelyét.
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3. feladat

A parttdl 10 km-re fekvo sziget dramelldtdsat szeretnénk biztositani egy
olyan dramellaté kozpontbdl, amely kozvetleniil a parton helyezkedik el, 20
km-re a partnak a szigethez legkozelebbi pontjatél. Ha 250 ezer Ft-ba
keriil 1 km viz alatti vezeték elhelyezése, és 100 ezerbe 1 km vezeték
telepitése a szdrazfoldon, akkor hatarozzuk meg a minimalis koltségii
Gtvonalat.

©
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4. feladat

Egy 1 | irtartalmd, henger alaki konzervdobozt szeretnénk késziteni.
Hatdrozza meg a doboz méreteit (gy, hogy adott vastagsagt lemezbdl
készitve a lehetd legkevesebb anyagra legyen sziikség az elkészitéséhez.

5. feladat

Egy 15 cm-szer 20 cm-es kartonlapbdl egy fedél nélkiili dobozt szeretnénk
hajtogatni (a lap 4 sarkdbdl 1-1 négyzetet kivagva, a keletkezé ,,fiileket”
felhajtva). Adja meg a doboz méretét gy, hogy annak térfogata
maximalis legyen.
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6. feladat

Egy 30 cm széles lemezbdl szeretnénk csatornat hajtogatni tgy, hogy a
lemez két szélén 10-10 cm-t valamilyen szogben felhajtunk. Hatarozza
meg a szoget gy, hogy a csatorndba a lehet6 legtobb viz férjen.

S
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Feluletek abrazolasa

Példa

Rajzoltassuk ki az f : R?2 = R, f(x) = x3 + x3 — 3x; — 3x, feliiletet a
[—2,2] x [-2, 2] tartomany felett.

xx=linspace(-2,2);
Vy=xx;
[X,Y]=meshgrid(xx,yy);
Z=X."3+Y. " 3-3%X-3%Y;
figure; mesh(X,Y,Z)
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Példa

Rajzoltassuk ki az f : R? — R, f(x) = xf + XS — 3x1 — 3x> feliilet
szintvonalait a [—2,2] x [—2, 2] tartomdny felett.

xx=linspace(-2,2);
Yy=xx;
[X,Y]=meshgrid(xx,yy);
Z=X."3+Y. " 3-3*X-3%*Y;
figure; contour(X,Y,Z)
axis equal
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A szintvonalakra rairathatjuk a ,,magassagi szamokat" is:

xx=linspace(-2,2);

YY=XX;

[X,Y]=meshgrid (xx,yy);

Z=X."3+Y. 3-3%X-3*Y;

figure; contour(X,Y,Z,'ShowText','on')
axis equal
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Tobbvaltozds fuggvények minimalizaldsa

Példa
Hatdrozzuk meg az f(x) = x§ + x3 — 3x1 — 3xz fliggvény gradiensét és a
stacionarius pontjait.

of 2
v 3xf —3
Vix)=| % = ( s )

Staciondrius pont: ahol Vf(x) = 0.

A fluiggvénynek 4 staciondrius pontja van:

(-1,-1), (-1,1), (1,-1), (1,1)
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Példa

Rajzoltassuk ki az f(x) = x§ + x5 — 3x; — 3x, fiiggvény szintvonalait és a
gradiens mezét a [—2,2] x [—2, 2] tartomany felett.

Figyeljiink ra, hogy a gradiens mez6 rajzolasdhoz nagyobb beosztasu
rdcsot hasznaljunk.

%a szintvonalak
xx=linspace(-2,2); yy=xx;
[X,Y]=meshgrid(xx,yy);
Z=X."3+Y."3-3%X-3%Y;
figure; contour(X,Y,Z)
axis equal

%a gradiensmezo
xx=linspace(-2,2,11); yy=xx;
[X,Y]=meshgrid (xx,yy);
dX=3*X."2-3;

dY=3x*Y."2-3;

hold on; quiver(X,Y,dX,dY)
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Az f(x) = x3 + x3 — 3x1 — 3x fiiggvény szintvonalai és a gradiensmezd.
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A gradiensmez6 kirajzoldsdhoz hasznalhatjuk az Octave gradient
fliggvényét is. (Ekkor nem kell kiszimolnunk a gradienst, az Octave
numerikusan kozeliti azt)

%a szintvonalak
xx=linspace(-2,2); yy=xx;
[X,Y]=meshgrid (xx,yy);
Z2=X."3+Y. 3-3*%X-3*Y;
figure; contour(X,Y,Z)
axis equal

%a gradiensmezo
xx=linspace(-2,2,11); yy=xx;
[X,Y]=meshgrid(xx,yy);
Z=X."3+Y. " 3-3%X-3%Y;
[dX,dY]=gradient (Z) ;

hold on; quiver(X,Y,dX,dY)
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Tegyiik rd az dbrara a staciondrius pontokat is!

/TP AN A
\‘7,5;:\')*/
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Az el6z6 dbran megfigyelhetjik, hogy

@ a gradiensvektor merdGleges az adott pontbeli szintvonalra

@ a vektorok hossza a gradiens nagysdgat, az irdnya a gradiens irdnyat
mutatja

@ a staciondrius pontokban a gradiensvektor hossza 0

A gradiensvektor az adott pontban a legmeredekebb emelkedés irdnydba
mutat, a (—1)-szerese (a negativ gradiens) pedig a legmeredekebb
csokkenés irdnydba.

Ha a gradiensmezd helyett a negativ gradiensmez6t rajzoltatjuk ki, akkor a
nyilak a csokkenés irdnydba mutatnak.
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Az f(x) = x3 + x3 — 3x1 — 3x, fiiggvény szintvonalai és a negativ
1 2 gg
gradiensmezo.
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Példa

Hatdrozzuk meg az f(x) = x§ + x3 — 3x1 — 3x2 fliggvény staciondrius
pontjainak tipusat!

A fliggvény Hesse-matrixa:

H(x) = ( 66(1 622 )

Ha x = (—1,—1), akkor

Heo = 7o g )

igy A1 <0, Ay > 0, tehdt ez a pont lokalis maximumbhely.
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Ha x = (—1,1), akkor

Heo = (7% 2),

igy A1 <0, Ay <0, tehat ez a pont nyeregpont.

Ha x = (1, —1), akkor
6 0
H(X) - ( 0 —6 > )

igy A1 >0, Ay <0, tehat ez a pont nyeregpont.

Ha x = (1,1), akkor
6 0
H(X) - < 0 6 )7

igy A1 >0, Ay > 0, tehat ez a pont lokalis minimumbhely.

Baran Agnes Numerikus matematika Labor 205 /212



7. feladat

Szamolja ki az aldbbi fliggvények gradiensét, a staciondrius pontjaikat, és
hatdrozza meg a stacionarius pontok tipusat. Rajzoltassa ki a feliileteket,

illetve egy mdsik dbran a fiiggvény szintvonalait és a negativ gradiens
mez06t.

(a) f(x1,x) =10 — x? — x3
(b) f(x1,x2) = x12X2 — 2X1X22 + 3x1xp + 2
(c) flx,x) = X3 — Xx{x5 —x1+ x5

8. feladat

Hatdrozza meg azt a téglatestet, melynek térfogata 1000 cm3 és éleinek
osszhossza minimalis.
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9. feladat

Egy cég 20000 $-t koltott egy dj termék kifejlesztésére. A termék
eldéllitasi koltsége darabonként 2 $. Egy piackutaté szerint, ha a cég R
$-t koltene rekldmra, és ezutdn a terméket darabonként A $-ért arulnd,
akkor a kereslet

2000 + 4v/R — 20A

darab lenne. Mennyit érdemes reklamra kolteni, és milyen dron érdemes
kindlni a terméket, ha a hasznot maximalizalni szeretnék?
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Tobbvaltozés fuggvények minimalizalasa Octave-val

Az fminsearch vagy az fminunc fliggvényeket haszndlhatjuk.

Példa: Keressiik meg az f(x) = x3 + x5 — 3x; — 3x fiiggvény egy lokalis
minimumhelyét.

Mindkét fliggvény hivasdhoz meg kell adnunk a minimumbhely egy kezdeti
kozelitését.

>> f=0(x) x(1)"3+x(2)"3-3%x(1)-3*x(2);
>> [xopt,fopt]=fminsearch(f,[0.5,0.5])

xopt =
0.99996 1.00000

fopt =
-4.0000
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Az fminunc fuggvénnyel:

>> £=0(x) x(1)"3+x(2)"3-3*x(1)-3*x(2);
>> [xopt,fopt]=fminunc(f,[0.5,0.5])

xopt =
1.0000 1.0000

fopt = -4.0000
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10. feladat
Rajzoltassa ki a megadott tartomany felett az aldbbi kétvaltozds
fuggvényeket, a szintvonalaikat, a negativ gradiensmezot és kozelitse az
adott tartomanyon beliil a minimumhelytket.

o f(x1,%) = 2x3 — x1 + 3x1x2, ha x € [-2.5,2.5]

o f(xi,x) = sin(xl)cos(xz) ha x € [0,27) x [0, 27)

o f(x1,x) = x2(1 — x? — x2), ha x € [-1.5,1.5]?
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11. feladat

Egy téli iidiiléovezetben a mentdhelikopter bazisallomasat ligy szeretnénk
elhelyezni, hogy az n adott sikozponttdl mért legnagyobb tavolsaga
minimalis legyen. frjon egy Octave-fliggvényt, melynek input paramétere
az az A € R™? mitrix, melynek soraiban a sikdzpontok koordinatai
taldlhatdéak, output paramétere pedig a mentohelikopter bazisdllomasanak
koordinatadit tartalmazé kételemi vektor.

12. feladat

Adott egy bolthalézat n lizletének elhelyezkedése. Helyezziik el az
aruraktdrat Ugy, hogy az lzletektdl vett tdvolsdgainak osszege minimalis
legyen. frjon egy Octave-fiiggvényt, melynek input paramétere az az

A € R™? mitrix, melynek soraiban az iizletek koordinatdi taldlhatdak,
output paramétere pedig az aruraktar koordinatait tartalmazé kételemi
vektor.
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13. feladat

I,rjon egy Octave-fuggvényt, mely egy adott f fliggvény minimumhelyét
kozeliti Newton-mddszerrel egy x0 kezdévektorbdl indulva € pontossaggal,
legfeljebb maxit |épést végezve. A fliggvény output paraméterei a
minimumhely kozelitése és az elvégzett |épések szama legyen.
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