
Az R nyelv alapjai

Baran Ágnes

Az R objektumai

◮ vektorok

◮ tömbök

◮ faktorok

◮ listák

◮ adatkeretek

◮ függvények

Vektorok
Minden elemük azonos t́ıpusú: numeric (integer vagy double),
complex, logical, character, raw

mode(a) vagy typeof(a) az a vektor t́ıpusa

Vektorok

Az x = (−1.2, 3.1, 4.7, 1.9) vektor megadása

◮ az “< −” operátorral:
x <- c(-1.2, 3.1, 4.7, 1.9)

◮ vagy:
c(-1.2, 3.1, 4.7, 1.9)->x

◮ az assign() függvénnyel:
assign(‘‘x’’, c(-1.2, 3.1, 4.7, 1.9))

Vektorok kiegésźıtése, összefűzése:
y <- c(1.4, x, 6.2)

z <- c(2.2, x, 0.3, y)

a<-numeric(0) egy üres numerikus vektor

Vektorok, mint szabályos sorozatok

Az x = (1, 2, 3, 4, 5) vektor:
x <- 1:5

(a kettőspont operátor magas prioritású!!!)
Az y <- 5:1 eredménye y = (5, 4, 3, 2, 1)

A rep() függvény:

◮ y <- rep(x, times=3)

Az x vektort 3-szor egymásután másolja.

◮ y <- rep(x, each=3)

Az x vektor minden egyes koordinátáját 3-szor megismétli.

Vektorok, mint szabályos sorozatok

A seq() függvény:
x <- seq(1,5)

x <- seq(from=1, to=5)

x <- seq(to=5, from=1)

Mindhárom utaśıtás eredménye az x = (1, 2, 3, 4, 5) vektor.

A seq() függvény további lehetséges argumentumai:

◮ by (lépésköz)
y <- seq(from=1, to=3, by=0.5)

eredménye: y = (1, 1.5, 2, 2.5, 3)

◮ length (koordináták száma)
z <- seq(from=1, by=0.1, length=11)

eredménye: z = (1, 1.1, 1.2, ..., 1.9, 2)

◮ along (egyedül szerepel argumentumként)
v <- seq(along=y)

előálĺıtja az (1, 2, 3, ..., length(y)) vektort.

Műveletek vektorokkal

◮ +,−, ∗, / a négy alapművelet,ˆa hatványozás, mindegyik
elemenként.
A vektoroknak nem kell ugyanannyi elemből állni!!
Pl. ha:

x <- 1:5

y <- c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

z <- x+3*y

akkor z a (1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1) (azaz x 2.2-szer egymás
után másolva) és a 3y vektorok összege.

◮ sin, cos, tan, exp, log, sqrt, abs stb. mind elemenként
hajtódik végre.

Műveletek vektorokkal

◮ min(x) és max(x) az x vektor legkisebb és legnagyobb eleme

◮ sort(x) az x elemeit növekvő sorrendbe rendezi

◮ rev(x) az x elemeit ford́ıtott sorrendben sorolja fel

◮ length(x) az x vektor elemeinek a száma

◮ sum(x) az x vektor elemeinek összege

◮ prod(x) az x vektor elemeinek szorzata

◮ mean(x) az x vektor elemeinek átlaga

◮ x[3] az x vektor harmadik eleme

◮ x[1:3] az x vektor első három eleme

◮ x[-3] az x vektor minden eleme, kivéve a harmadikat

◮ x[-c(3,5)] az x vektor minden eleme, kivéve a 3. és 5.

◮ sample(x) az x vektor koordinátáit véletlenszerűen
permutálja

Hiányzó értékek

◮ NA : Not Available (hiányzó érték)

◮ NaN : Not a Number (pl. 0/0, Inf/Inf)

Pl. a <- 1:3; a[5] <- 1 esetén a=(1, 2, 3, NA, 1)

Ha a <- c(-2, 0, NA, 1, 0/0) akkor

◮ is.na(a) eredménye: FALSE FALSE TRUE FALSE TRUE

◮ is.nan(a) eredménye: FALSE FALSE FALSE FALSE TRUE

Fontos! NA==NA és NaN==NaN értéke egyaránt NA

NA, NaN értéke általában nem változik műveletvégzéssel

Logikai vektorok

Logikai operárorok

◮ <, <=, >, >=, ==, ! =

◮ & (AND), | (OR), ! (NOT), xor(,)

Logikai vektorok
Elemei a TRUE, a FALSE és az NA lehetnek
Pl. az

a <- c(-1, 3, 2, 0)

b <- a>1

utaśıtások eredménye a b=(FALSE TRUE TRUE FALSE) vektor, ḿıg
a <- c(1,-1,NA,0)

b <- a<0.5

eredménye: FALSE TRUE NA TRUE

Logikai függvények

◮ which : egy logikai vektor TRUE értékeinek indexeit adja

◮ any : értéke TRUE, ha a logikai vektor valamely komponense
TRUE.

H́ıvása: any(x,na.rm=FALSE)
ahol x logikai vektor, na.rm opcionális (alapértelmezés
FALSE), TRUE érték esetén a vizsgálatból kihagyja az x
vektor NA komponenseit.

◮ all : értéke TRUE, ha a logikai vektor minden komponense
TRUE.

H́ıvása: all(x,na.rm=FALSE)
ahol x logikai vektor, na.rm opcionális

Logikai függvények

◮ identical() Két objektum teljes egyezését vizsgálja

◮ all.equal() Két objektum egyezését vizsgálja valamilyen
toleranciaszint mellett.

Példák.

> a <- c(1,-1,NA,0)

> b <- c(1,-1,NA,0)

> c <- c(1,-1,NA,0.0001)

> identical(a,b)

[1] TRUE

> all.equal(a,c)

[1] "Mean absolute difference: 1e-04"

Ha megadjuk a toleranciaszintet:
> all.equal(a,c,0.01)

[1] TRUE

Objektumok t́ıpusa, konverziók

◮ T́ıpus lekérdezése:
mode(), typeof()

◮ Logikai függvények annak eldöntésére, hogy egy objektum
adott t́ıpusú-e:
is.integer(), is.double(), is.complex(),

is.caracter(), is.logical(), is.numeric(),

is.list(),...

◮ Konverziós függvények:
as.integer(), as.double(), as.complex(),

as.caracter(), as.logical(), as.numeric(),

as.list(),...

Feladatok

◮ Az elemek egyenkénti begépelése nélkül álĺıtsa elő az alábbi
vektorokat!

(1) a = (0, 1, · · · , 30)
(2) b = (2, 4, 6, . . . , 100),
(3) c = (2, 1.9, 1.8, · · · , 0.1, 0)
(4) d = (0, 3, 6, . . . , 27, 30,−100, 30, 27, · · · , 6, 3, 0)
(5) e =

(

1

2
, 1

3
, · · · , 1

20

)

(6) f =
(

1

2
, 2

3
, · · · , 19

20

)

◮ Legyen x egy adott 100 elemű sorvektor. Az x vektorból
álĺıtsa elő azt az y vektort, melynek elemei

(1) az x vektor elemei ford́ıtott sorrendben felsorolva,
(2) az x vektor első 5 eleme,
(3) az x vektor elemei ugyanolyan sorrendben, kivéve az x 4.

elemét
(4) az x vektor elemei ugyanolyan sorrendben, kivéve az x 5., 72.

és 93. elemét
(4) az x vektor páratlan sorszámú elemei
(5) az x vektor 2., 5., 17. és 81. eleme.

Feladatok

◮ Legyen x egy 100 elemű véletlen vektor. Álĺıtsa elő azt az y

vektort, amely az x vektor 3 legnagyobb elemét tartalmazza.

◮ Legyen x egy 100 elemű véletlen vektor. Álĺıtsa elő azt az y

vektort, amely az x vektor minden 10. elemét tartalmazza.

◮ Legyen x egy adott vektor. Álĺıtsa elő azt az y vektort, amely
az x vektor 3-nál nagyobb elemeit tartalmazza.

◮ Legyen x egy adott vektor. Álĺıtsa elő azt az y vektort, amely
az x vektor (0, 1) intervallumon ḱıvül eső elemeit tartalmazza.

◮ Legyen x egy adott vektor. Álĺıtsa elő azt az y vektort, amely
az x vektor elemeit tartalmazza, kivéve az NA és NaN
elemeket.

◮ Legyen x egy adott vektor. Álĺıtsa elő azt az y vektort, amely
az x vektor NA-tól és NaN-tól különböző elemeinek
kétszereseit tartalmazza.

Mátrixok

Adott a vektor és n, m értékek esetén

A <- matrix(a, nrow = n, ncol = m, byrow = FALSE)

egy n ×m-es A mátrixot ad (az a vektorból oszlopfolytonosan)

◮ Ha length(a) < nm, akkor ciklikusan ismétli az a vektort

◮ nrow és ncol közül elegendő az egyik

◮ a byrow opcionális, alapértelmezés a FALSE

A[i,j] az A mátrix (i , j)-edik eleme
A[1:3,2:4] az A mátrix 1.,2.,3. sorainak és 2.,3.,4. oszlopainak
metszete

Mátrixok

◮ A[i,] : a mátrix i-edik sora

◮ A[,j] : a mátrix j-edik oszlopa

◮ A[,c(2,4)] : a mátrix 2. és 4. oszlopa

◮ B <- A[-2,] : elhagyja a mátrix 2. sorát

◮ B <- A[,-c(1,3)] : elhagyja a mátrix 1. és 3. oszlopát

◮ C <- cbind(A,B) : horizontálisan összefűzi az A és B
mátrixokat (A-nak és B-nek ugyanannyi sora legyen!)

◮ C <- rbind(A,B) : vertikálisan összefűzi az A és B
mátrixokat (A-nak és B-nek ugyanannyi oszlopa legyen!)

Mátrixműveletek

◮ +,−, ∗, /,̂ elemenkénti műveletek (azonos méretű mátrixok!)

◮ % ∗% mátrixszorzás

Mátrix-vektor műveletek

Ha x egy vektor, A egy mátrix, akkor x*A és A*x eredménye
ugyanaz: az elemenkénti szorzata az A mátrixnak és annak a
mátrixnak, mely ugyanolyan méretű mint A és az x vektor
elemeinek oszlopfolytonos ciklikus ismételgetésével kapunk.

Az A% ∗%x és x% ∗%A eredménye (ahol x elemeinek száma első
esetben A oszlopainak, második esetben A sorainak számával
egyezik meg) az Ax és xA szorzat.

Külső szorzat
a%o%b : az a tömb minden elemét szorozzuk a b tömb minden
elemével.

A diag() függvény

Használata:
diag(x , nrow, ncol)

diag(x) <- value

ahol

◮ x : egy szám, egy vektor, egy mátrix vagy hiányzik

◮ nrow, ncol : opcionális, de csak akkor szerepelhet, ha x nem
mátrix

◮ value : egy szám, vagy az x diagonálisával megegyező méretű
vektor

Példák:

◮ diag(5) : az 5× 5-ös egységmátrix

◮ diag(5,3,4) : egy 3× 4-es diagonális mátrix, átlójában
csupa 5-össel

◮ diag(1:3,5,4) : egy 5× 4-es diagonális mátrix, átlójában
ciklikusan az (1,2,3) vektor

A diag() függvény

Példák:
Ha A egy adott mátrix

◮ diag(A) : az a vektor, mely az A mátrix diagonálisát
tartalmazza

◮ diag(A) <- 3 : az A diagonálisának minden elemét 3-ra
cseréli

◮ diag(A) <- a : (ahol a ugyanakkora vektor, mint az A

diagonálisa) az A diagonálisát kicseréli az a vektorral

Néhány hasznos függvény

◮ t(A) : az A transzponáltja

◮ dim(A) : az A mérete

◮ nrow(A) : az A sorainak száma

◮ ncol(A) : az A oszlopainak száma

◮ det(A) : az A determinánsa

◮ solve(A) : az A inverze

◮ solve(A,b) : az Ax = b egyenletrendszer megoldása

◮ colSums(A) : az A oszlopaiban álló elemek összegei

◮ rowSums(A) : az A soraiban álló elemek összegei

◮ sum(A) : az A elemeinek összege

Tömbök

Az a <- 1:12; b <- a; dim(b) <- c(3,4)

utaśıtások eredménye az

b =





1 4 7 10
2 5 8 11
3 6 9 12





mátrix.

Az a <- 1:12; b <- array(a,dim=c(3,4))

utaśıtások is a fenti b mátrixot adják.

Tömbök

DE az
a <- 1:12; b <- a; dim(b) <- c(3,5)

utaśıtásra hibaüzenetet kapunk:
Error in dim(b) <- c(3, 5) :

dims [product 15] do not match the length of object

[12]

ḿıg az
a <- 1:12; b <- array(a,dim=c(3,5))

utaśıtás eredménye a

b =





1 4 7 10 1
2 5 8 11 2
3 6 9 12 3





mátrix.

Tömbök

Többdimenziós tömböket is definiálhatunk:

a <- array(v,dim=d,dimname=L)

ahol

◮ v : egy vektor (a tömb elemeinek vektora)

◮ d : a dimenziók vektora

◮ L : opcionális, egy lista (ld később), a dimenziók nevei

Példa

a <- array(1:12,dim=c(3,2,2))

Az objektum szerkezetéről a str() függvény ad információt.

Az apply() függvény

Végrehajt egy megadott függvényt egy mátrix, vagy tömb
megadott dimenziói mentén.

apply(A,v,fv)

ahol

◮ A egy tömb

◮ v egy szám, vagy egy vektor

◮ fv a végrehajtandó függvény

Példa

> A <- matrix(1:12,3)

> s1 <- apply(A,1,sum) (sorösszegek)
> s2 <- apply(A,2,sum) (oszlopösszegek)
> A <- array(1:12,c(3,2,2))

> S <- apply(A,1:2,sum)

Feladatok

◮ Álĺıtsa elő azt a 3× 4-es A mátrixot, mely sorfolytonosan
tartalmazza az 1, . . . , 12 elemek kétszereseit!

◮ Álĺıtsa elő a csupa 1-esekből álló 3× 5-ös mátrixot.

◮ Álĺıtsa elő azt a 4× 5-ös mátrixot, melynek átlójában az
1,2,3,4 elemek állnak, minden más eleme 0.

◮ Legyen A egy adott 4× 5-ös mátrix. Cserélje ki az A

diagonálisának minden elemét (−1)-re.

◮ Legyen A egy adott 3× 4-es mátrix. Mi lesz a cbind(A,1),
cbind(1,A), rbind(A,1), rbind(1,A) utaśıtások
eredménye?

◮ Keresse meg egy 6× 8-as véletlen mátrix minden sorában a
maximális elemet.

◮ Egy adott A mátrix esetén konstruálja meg azt a B mátrixot,
melyet úgy kapunk, hogy az A sorainak végére odáırjuk az
adott sorban álló elemek átlagát.

Feladatok

◮ Legyen A <- matrix(1:12,3,byrow=TRUE). Konstruálja
meg (az elemek felsorolása nélkül) azt a B mátrixot, melyet
úgy kapunk, hogy

(1) elhagyjuk az A mátrix első sorát,
(2) elhagyjuk az A mátrix 2. és 4. oszlopát,
(3) elhagyjuk az A mátrix utolsó sorát és oszlopát
(4) kétszer egymás mellé ı́rjuk az A mátrixot,
(5) transzponáljuk az A mátrixot,
(6) felcseréljük az A mátrix 2. és 4. oszlopát
(7) négyzetre emeljük az A elemeit
(8) az A minden elemét megnöveljük 3-mal
(9) A minden elemének vesszük a négyzetgyökét
(10 az A első sorának második elemét kicseréljük −2-re
(11) az A 2. sorát kicseréljük a (−1 0 − 2 3) vektorra

Feladatok

◮ Vizsgálja meg a beéṕıtett Titanic tömböt. Itt a tömb 4
dimenziója az utasosztály (1., 2., 3., legénység), a nem, a kor
(gyerek, felnőtt), és az, hogy túlélte-e a katasztrófát. Az
apply() függvény seǵıtségével állaṕıtsa meg, hogy a túlélők
között a nők, vagy a férfiak voltak-e többen. Milyen osztályon
utazott a legtöbb túlélő? A legénység hány százaléka élte túl
a katasztrófát?

◮ Határozza meg a beéṕıtett women tömbben szereplő nők
átlagos magasságát és súlyát. Melyik nő esetén lesz maximális
a súly/magasság hányados?

Faktorok

Egy olyan objektum, amely más vektorok elemeinek osztályozására
szolgál.

Példa

>szak <- c("GI","GI","PTI","PTI",

"MI","PTI","MI","GI","GI","MI","MI","GI","PTI","PTI")

>szakF <- factor(szak)

Ekkor a szakF faktor:
[1] GI GI PTI PTI MI PTI MI GI GI MI MI GI PTI PTI

Levels: GI MI PTI

A szintek lekérdezhetőek a levels() függvénnyel:
>levels(szakF)

[1] "GI" "MI" "PTI"

Faktorok

Ha adottak a tanulmányi eredmények:
>eredm <-

c(4.2,3.1,4.8,3.7,5,4.5,4.2,3.9,4,3.8,4.4,3.6,4.8,4.4)

akkor kiszáḿıthatjuk a szakonkénti átlagot:

> atlag <- tapply(eredm,szakF,mean)

Ennek eredménye:
GI MI PTI

3.76 4.35 4.44

A tapply() függvény:

tapply(a,b,fv)

ahol a egy vektor, b egy faktor (ugyanannyi elemű mint a), fv egy
függvény.
Hatása: az a elemeit csoportośıtja b-nek megfelelően és a
csoportokra alkalmazza az fv függvényt.

Faktorok

A cut() függvény:
numerikus vektort faktorrá konvertál.

Példa: a beéṕıtett women tömb weight oszlopával:

f <- cut(women$weight,3)
f<-cut(women$weight,3,labels=c(’Low’,’Medium’,’High’))

3 egyforma hosszú intervallumba sorolja az értékeket, a 2. esetben
a szinteknek nevet is adunk.

f <- cut(women$weight,breaks=c(114,135,164))

a megadott határok szerinti intervallumokba sorolja az értékeket

A table() függvény elkésźıti a gyakoriságtáblát:

table(f)

Faktorok

A cut() függvény

Példa: Megadott kvantilisek szerinti faktorizáció:

> x <- sample(1:15)

> cut(x,breaks=quantile(x,c(0,0.25,0.5,0.75,1)),

+ labels=c("I","II","III","IV"))

Ha nem szeretnénk a legkisebb elemet sem kihagyni a vizsgálatból:
> cut(x,breaks=quantile(x,c(0,0.25,0.5,0.75,1)),

+ labels=c("I","II","III","IV"),include.lowest=T)

Feladatok

◮ Legyenek adottak a faktoroknál léırt szak és eredm vektorok.
Vizsgálja meg az alábbi 2 utaśıtás után a szakF és az atlag
objektumok értékét.
>szakF <- factor(szak,levels=c("GI","MI"))

>atlag <- tapply(eredm,szakF,mean)

◮ Egy cég tovább szeretné képezni a dolgozóit, ezért 3 napon át
egy felmérést végzett körükben. Minden nap 6 feladatot
kellett megoldani, az erre kapott pontszámokat a teszt.dat

táblázat e1–e6 oszlopai tartalmazzák. Az elért pontszámok és
a betöltött munkakör alapján száḿıtott összpontszámokat az
eredm oszlop tartalmazza, a valasz oszlpoban az szerepel,
hogy az adott dolgozó hajlandó-e résztvenni a programban.
Határozza meg az egyes napokra beh́ıvottak számát, az egyes
napokon meg nem jelentek számát és az összpontszámok
átlagát. Száḿıtsa ki az egyes napokon azon dolgozók
összpontszámának átlagát, akik hajlandóak résztvenni a
programban.

Listák

Nem feltétlenül azonos t́ıpusú objektumok vektora.

Példa:

> a <- c("Adam","Bela","Cecil","Denes","Elemer")

> b <- c(12,2,3)

> c <- matrix(1:12,3)

> L <- list(a,b,c)

Hivatkozás az L lista i-edik komponensére: L[[i]] , az i-edik
komponens j-edik elemére: L[[i]][j]

Példa:

> L[[1]][2] <- "Bandi"

Kicseréli a lista első komponensében "Bela"-t "Bandi"-ra (de az
eredeti a vektort nem ı́rja felül)

Listák

Példa: Tömb dimenzió-neveinek megadása listával.

> a <- c(8,23,11,5,24,14,4,28,16,10,21,4)

> termet <- c("kicsi","kozepes","nagy")

> nem <- c("ffi","no")

> kor <- c("gyerek","felnott")

> L <- list(termet, nem, kor)

> A<-array(a,c(3,2,2),L)

lapply() függvény:
lapply(lista,fuggv)

az lista minden elemére alkalmazza a fuggv függvényt.

Példa:

lapply(L,length)

Adatkeretek

Különböző t́ıpusú adatok táblázatos formában tárolására.

Példa:

> n <-c("Antal A.","Balogh B.","Cseh C.","David D")

> l <- c("Debrecen", "Szeged", "Bp", "Bp")

> s <- c(1992,1987,1971,1985)

> v <- c(TRUE, TRUE, FALSE, TRUE)

> df <- data.frame(n,l,s,v)

n l s v
1 Antal A. Debrecen 1992 TRUE
2 Balogh B. Szeged 1987 TRUE
3 Cseh C. Bp 1971 FALSE
4 David D Bp 1985 TRUE

Az oszlopok neveit megváltoztathatjuk:
names(df) <- c("nev","lakhely","szul","valaszolt")

Adatkeretek

Fontos! A függvényeknek átadott karakter vektorok
automatikusan faktorrá konvertálódnak. Pl a df adatkeret
szerkezete:
> str(df)

’data.frame’: 4 obs. of 4 variables:

$ nev : Factor w/ 4 levels "Antal A.","Balogh

B.",..: 1 2 3 4

$ lakhely : Factor w/ 3 levels "Bp","Debrecen",..:

2 3 1 1

$ szul : num 1992 1987 1971 1985

$ valaszolt: logi TRUE TRUE FALSE TRUE

Ezt úgy lehet megakadályozni, hogy a vektort az I(x) függvénnyel
levédve adjuk át a data.frame() függvénynek.

> df <- data.frame(I(n),I(l),s,v)

Adatkeretek

◮ Hivatkozás elemekre:

> df[2,3]

[1] 1987

> df[2,"szul"]

[1] 1987

◮ Hivatkozás sorokra

> df[1,]

nev lakhely szul valaszolt

1 Antal A. Debrecen 1992 TRUE

◮ Hivatkozás oszlopokra

> df[,1]

[1] Antal A. Balogh B. Cseh C. David D

Levels: Antal A. Balogh B. Cseh C. David D

Adatkeretek

Hivatkozás oszlopra névvel:
> df$valaszolt
[1] TRUE TRUE FALSE TRUE

Az attach() függvény:

attach(df)

Ezután a lakhely, nev, szul, valaszolt változók közvetlenül
h́ıvhatók:
> lakhely

[1] "Debrecen" "Szeged" "Bp" "Bp"

A detach() függvénnyel kivehetjük a közvetlen elérési útból a
változókat.

read.table()

Táblázat beolvasása fájlból.

Példa: ha a tableexample.txt fájl a köv.:

nev P1 P2 P3 P4
Albert 2 5 8 0
Bela 4 0 7 3
Cecil 7 9 10 6
Denes 3 4 4 0
Edit 5 1 2 1
Flora 4 8 5 4

eredm <- read.table("tableexample.txt",header=T)

Ekkor az eredm objektum egy adatkeret.

Ha a fájlban hiányzik a fejrész, akkor

eredm <- read.table("tableexample.txt")

Adatkeretek

Hivatkozás adatkeretek részeire:

> df[3:4,1:2]

nev lakhely

3 Cseh C. Bp

4 David D Bp

Ha azok az 1990 előtt születettek érdekelnek, akik válaszoltak:

> subset(df,szul<1990 & valaszolt==T)

nev lakhely szul valaszolt

2 Balogh B. Szeged 1987 TRUE

4 David D Bp 1985 TRUE

Adatkeretek

Oszlop hozzáadása:

> df$nem <- c("ffi","ffi","no","ffi")

nev lakhely szul valaszolt nem
1 Antal A. Debrecen 1992 TRUE ffi
2 Balogh B. Szeged 1987 TRUE ffi
3 Cseh C. Bp 1971 FALSE no
4 David D Bp 1985 TRUE ffi

Sor hozzáadása (az új 5 oszlopos táblához): (Csak akkor megy,
ha figyeltünk arra, hogy a karakter vektorból ne legyen
faktor!)

> ujsor <- c("Elek E", "Pecs", 1977, FALSE, "no")

> dfuj <- rbind(df,ujsor)

merge()

Mátrixok, adattáblák összefésülése. Ha
> d1 > d2

a b
1 Adam 12
2 Bela 31
3 Csaba 2
4 Denes 54
5 Elek 9

a c
1 Balazs 11
2 Adam 21
3 Gabor 8
4 Csaba 26
5 Denes 14
6 Imre 30

akkor
> merge(d1,d2,by="a")

a b c
1 Adam 12 21
2 Csaba 2 26
3 Denes 54 14

merge()

Ha az összefésült táblázatban minden adatot szerepeltetni akarunk:

> merge(d1,d2,by="a",all=T)

a b c
1 Adam 12 21
2 Bela 31 NA
3 Csaba 2 26
4 Denes 54 14
5 Elek 9 NA
6 Balazs NA 11
7 Gabor NA 8
8 Imre NA 30

Elágazások, ciklusok

if elágazás
if(logikai kifejezes) { utasitas1} else { utasitas2}

ifelse függvény (az if-else vektorizált alakja)

ifelse(a,b,c)

ahol a logikai vektor, b és c vektorok. Vektorral tér vissza, ha
a[i] igaz, akkor b[i]-vel, egyébként c[i]-vel.

Példa:

x <- c(-3, 1, 0, -2, 2)

ifelse(x>0,x,-x)

eredménye az abs(x) vektor

Elágazások, ciklusok

for-ciklus

for(valtozo in vektor) utasitas

Példa:

s <- 0

for(i in 1:10) s <- s+i

FONTOS! Ha lehet kerüljük a for-ciklus használatát, használjunk
helyette egész vektorra alkalmazható függvényeket.

while-ciklus

while(feltetel) utasitas

Példa:

x <- -2

while(x<8) { x <- x+2; print(x)}

Elágazások, ciklusok

repeat

repeat { utasitas}

Példa:

x <- -2

repeat { x <- x+2; print(x); if(x>8) break}

◮ break : kiugrik a ciklusból

◮ next : a ciklusváltozó következő értékére ugrik

Függvények

Szintaktika:

fvneve <- function(arg1,arg2,...) {utasitasok }

H́ıvása:

fvneve(arg1,arg2,...)

Példa:

sajatfv <- function(x){
x ˆ 2− 3 ∗ x + 1
}

Ezután sajatfv(4) az 5 értéket adja vissza.

Feladatok.

◮ Írjon egy függvényt, mely tetszőleges a numerikus vektor és x
valós szám esetén megadja az a vektor x-hez legközelebbi
elemét.

◮ Írjon egy függvényt, mely kiszámolja egy tetszőleges
numerikus vektor elemeinek átlagát úgy, hogy a legnagyobb és
legkisebb elemet nem veszi figyelembe.

◮ Írjon egy függvényt, mely tetszőleges numerikus A mátrix
sorait úgy cserélgeti meg, hogy az első oszlop elemei növekvő
sorrendben álljanak.

◮ Írjon egy függvényt, mely egy vektor minden koordinátájához
hozzáad 1-et for-ciklussal, majd mérje meg a futási időt
akkor, ha a függvényt az x <- runif(10000000) vektorral
h́ıvja meg. Hasonĺıtsa össze a futási időt x+1 utaśıtás
végrehajtásának idejével.

Grafika

Magas sźıntű függvények. Egy utaśıtással ábra késźıthető, pl.:

◮ plot()

◮ hist()

◮ boxplot()

◮ barplot()

Alacsony sźıntű függvények. Meglévő ábrák módośıtása, pl:

◮ lines()

◮ points()

◮ axis()

◮ legend()

◮ text()

◮ title()

plot()

plot(x,y,’’l’’)

ahol x és y vektorok, idézőjelek között a vonal t́ıpusa.
Néhány vonalt́ıpus:

1 2 3 4 5

0
2

4
6

8

 p (default)

x

y

1 2 3 4 5
0

2
4

6
8

l

x

y

1 2 3 4 5

0
2

4
6

8

o

x

y

1 2 3 4 5

0
2

4
6

8

s

x

y

1 2 3 4 5

0
2

4
6

8

S

x

y

1 2 3 4 5

0
2

4
6

8

h

x

y

plot()

> x <- 1:5

> y <- c(1, 0, 1, 4, 9)

> plot(x,y,type="o",col="blue",xlim=c(0,6),

+ ylim=c(-1,10),ann=F)

> title(main="Pontok",col.main="red",font.main=4,

+ xlab="A",ylab="B")

0 1 2 3 4 5 6

0
2

4
6

8
1

0

Pontok

A

B

curve()
par(mfrow=c(2,2))

curve(7 ∗ (xˆ2) + 3 ∗ x − 1, from=-10, to=10)

curve(cos, from=-5, to=5)

curve(sin(x)/x, from=-20, to=20, n=200)

curve(dnorm(x,mean=3,sd=2), from=-1, to=7)

-10 -5 0 5 10

0
2
0
0

4
0
0

6
0
0

x

7
 *

 (
x
^2

)
+

 3
 *

 x
 -

 1

-4 -2 0 2 4

-1
.0

-0
.5

0
.0

0
.5

1
.0

x

c
o
s
(x

)

-20 -10 0 10 20

-0
.2

0
.2

0
.6

1
.0

x

s
in

(x
)/

x

0 2 4 6

0
.0

5
0
.1

0
0
.1

5
0
.2

0

x

d
n
o
rm

(x
,
m

e
a
n
 =

 3
,
s
d
 =

 2
)

> a <- c(2,4,-1,1,0)

> b <- c(1,3,2,-2,1)

> c <- c(3,0,2)

> l <- min(c(a,b,c))

> u <- max(c(a,b,c))

> plot(1:5,a,type="o",col="blue",ylim=c(l,u),ann=F)

> lines(1:5,b,type="o",pch=20,lty=2,col="red")

> points(c(1,3,4),c,type="p",pch=8,col="green")

1 2 3 4 5

-2
-1

0
1

2
3

4

