Discrete mathematics

Test 2 - sample

Theory

Exercise A What does the theorem 'Euclidean division for polynomials' states?
Exercise B What is a partial permutation and in such a case how many possibilities do we have?
Exercise C Define the basis of a vector space and the coordinates of a vector with respect to a given basis.

Exercise D What is a homogeneous system of linear equations, and how does the solution space looks like?

Practice

Exercise 1 Do Euclidean division on the polynomials below. Furthermore, use Horner's method to calculate $p(2)$.

$$
p(x)=2 x^{4}-3 x^{3}+4 x^{2}-5 x+6, \quad s(x)=x^{2}-3 x+1
$$

Exercise 2 In how many ways can 8 people be arranged around a round table? What is the solution if two of them want to sit next to each other?

Exercise 3 In how many ways we can choose a group of 4 from 5 boys and 5 girls, such that there are exactly two girls among them?

Exercise 4 Consider the matrices below. What is the matrix $A \cdot B$ and A^{T} ?

$$
A=\left(\begin{array}{rrr}
-1 & 2 & 3 \\
7 & 1 & 0
\end{array}\right) \quad B=\left(\begin{array}{r}
-2 \\
0 \\
4
\end{array}\right)
$$

Exercise 5 Calculate the determinant below.

$$
\left|\begin{array}{rrrr}
-1 & 0 & 4 & 0 \\
1 & 2 & 0 & -1 \\
8 & 3 & -6 & 0 \\
1 & -2 & 2 & 5
\end{array}\right|
$$

Exercise 6 Solve the following system of linear equations.

$$
\begin{aligned}
2 x+5 y+z= & 4 \\
-5 x-12 y-4 z= & -1 \\
x+3 y-z= & 11
\end{aligned}
$$

Exercise 7 Determine the inverse of the matrix A.

$$
A=\left(\begin{array}{rr}
-4 & 9 \\
1 & -3
\end{array}\right)
$$

