
Week 1 Lecture Notes

ML:Introduction

What is Machine Learning?

Two de�nitions of Machine Learning are o�ered. Arthur Samuel described it as: "the �eld of study that gives
computers the ability to learn without being explicitly programmed." This is an older, informal de�nition.

Tom Mitchell provides a more modern de�nition: "A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E."

Example: playing checkers.

E = the experience of playing many games of checkers

T = the task of playing checkers.

P = the probability that the program will win the next game.

In general, any machine learning problem can be assigned to one of two broad classi�cations:

supervised learning, OR

unsupervised learning.

Supervised Learning

In supervised learning, we are given a data set and already know what our correct output should look like,
having the idea that there is a relationship between the input and the output.

Supervised learning problems are categorized into "regression" and "classi�cation" problems. In a regression
problem, we are trying to predict results within a continuous output, meaning that we are trying to map input
variables to some continuous function. In a classi�cation problem, we are instead trying to predict results in a
discrete output. In other words, we are trying to map input variables into discrete categories. Here is a
description on Math is Fun on Continuous and Discrete Data.

Example 1:

Given data about the size of houses on the real estate market, try to predict their price. Price as a function of
size is a continuous output, so this is a regression problem.

We could turn this example into a classi�cation problem by instead making our output about whether the
house "sells for more or less than the asking price." Here we are classifying the houses based on price into two
discrete categories.



Example 2:

(a) Regression - Given a picture of Male/Female, We have to predict his/her age on the basis of given picture.

(b) Classi�cation - Given a picture of Male/Female, We have to predict Whether He/She is of High school,
College, Graduate age. Another Example for Classi�cation - Banks have to decide whether or not to give a loan
to someone on the basis of his credit history.

Unsupervised Learning

Unsupervised learning, on the other hand, allows us to approach problems with little or no idea what our
results should look like. We can derive structure from data where we don't necessarily know the e�ect of the
variables.

We can derive this structure by clustering the data based on relationships among the variables in the data.

With unsupervised learning there is no feedback based on the prediction results, i.e., there is no teacher to
correct you.

Example:

Clustering: Take a collection of 1000 essays written on the US Economy, and �nd a way to automatically group
these essays into a small number that are somehow similar or related by di�erent variables, such as word
frequency, sentence length, page count, and so on.

Non-clustering: The "Cocktail Party Algorithm", which can �nd structure in messy data (such as the
identi�cation of individual voices and music from a mesh of sounds at a cocktail party
(https://en.wikipedia.org/wiki/Cocktail_party_e�ect) ). Here is an answer on Quora to enhance your
understanding. : https://www.quora.com/What-is-the-di�erence-between-supervised-and-unsupervised-
learning-algorithms ?

ML:Linear Regression with One Variable

Model Representation

Recall that in regression problems, we are taking input variables and trying to �t the output onto a continuous
expected result function.

Linear regression with one variable is also known as "univariate linear regression."

Univariate linear regression is used when you want to predict a single output value y from a single input
value x. We're doing supervised learning here, so that means we already have an idea about what the
input/output cause and e�ect should be.

The Hypothesis Function

Our hypothesis function has the general form:

= (x) = + xŷ hθ θ0 θ1

( )



Note that this is like the equation of a straight line. We give to  values for  and  to get our estimated
output . In other words, we are trying to create a function called  that is trying to map our input data (the
x's) to our output data (the y's).

Example:

Suppose we have the following set of training data:

input x output y

0 4

1 7

2 7

3 8

Now we can make a random guess about our  function:  and . The hypothesis function
becomes .

So for input of 1 to our hypothesis, y will be 4. This is o� by 3. Note that we will be trying out various values of 
 and  to try to �nd values which provide the best possible "�t" or the most representative "straight line"

through the data points mapped on the x-y plane.

Cost Function
We can measure the accuracy of our hypothesis function by using a cost function. This takes an average
(actually a fancier version of an average) of all the results of the hypothesis with inputs from x's compared to
the actual output y's.

To break it apart, it is   where  is the mean of the squares of  , or the di�erence between the

predicted value and the actual value.

This function is otherwise called the "Squared error function", or "Mean squared error". The mean is halved 

 as a convenience for the computation of the gradient descent, as the derivative term of the square

function will cancel out the  term.

Now we are able to concretely measure the accuracy of our predictor function against the correct results we
have so that we can predict new results we don't have.

If we try to think of it in visual terms, our training data set is scattered on the x-y plane. We are trying to make
straight line (de�ned by ) which passes through this scattered set of data. Our objective is to get the best
possible line. The best possible line will be such so that the average squared vertical distances of the scattered
points from the line will be the least. In the best case, the line should pass through all the points of our training
data set. In such a case the value of  will be 0.

ML:Gradient Descent
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So we have our hypothesis function and we have a way of measuring how well it �ts into the data. Now we
need to estimate the parameters in hypothesis function. That's where gradient descent comes in.

Imagine that we graph our hypothesis function based on its �elds  and  (actually we are graphing the cost
function as a function of the parameter estimates). This can be kind of confusing; we are moving up to a higher
level of abstraction. We are not graphing x and y itself, but the parameter range of our hypothesis function and
the cost resulting from selecting particular set of parameters.

We put  on the x axis and  on the y axis, with the cost function on the vertical z axis. The points on our
graph will be the result of the cost function using our hypothesis with those speci�c theta parameters.

We will know that we have succeeded when our cost function is at the very bottom of the pits in our graph, i.e.
when its value is the minimum.

The way we do this is by taking the derivative (the tangential line to a function) of our cost function. The slope
of the tangent is the derivative at that point and it will give us a direction to move towards. We make steps
down the cost function in the direction with the steepest descent, and the size of each step is determined by
the parameter α, which is called the learning rate.

The gradient descent algorithm is:

repeat until convergence:

where

j=0,1 represents the feature index number.

Intuitively, this could be thought of as:

repeat until convergence:

[Slope of tangent aka derivative in j

dimension]

Gradient Descent for Linear Regression

When speci�cally applied to the case of linear regression, a new form of the gradient descent equation can be
derived. We can substitute our actual cost function and our actual hypothesis function and modify the
equation to (the derivation of the formulas are out of the scope of this course, but a really great one can be
found here):

where m is the size of the training set,  a constant that will be changing simultaneously with  and are
values of the given training set (data).
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Note that we have separated out the two cases for  into separate equations for  and ; and that for  we

are multiplying  at the end due to the derivative.

The point of all this is that if we start with a guess for our hypothesis and then repeatedly apply these gradient
descent equations, our hypothesis will become more and more accurate.

Gradient Descent for Linear Regression: visual worked example

Some may �nd the following video (https://www.youtube.com/watch?v=WnqQrPNYz5Q) useful as it visualizes
the improvement of the hypothesis as the error function reduces.

ML:Linear Algebra Review
Khan Academy has excellent Linear Algebra Tutorials (https://www.khanacademy.org/#linear-algebra)

Matrices and Vectors
Matrices are 2-dimensional arrays:

The above matrix has four rows and three columns, so it is a 4 x 3 matrix.

A vector is a matrix with one column and many rows:

So vectors are a subset of matrices. The above vector is a 4 x 1 matrix.

Notation and terms:

 refers to the element in the ith row and jth column of matrix A.

A vector with 'n' rows is referred to as an 'n'-dimensional vector

 refers to the element in the ith row of the vector.

In general, all our vectors and matrices will be 1-indexed. Note that for some programming languages, the arrays
are 0-indexed.

Matrices are usually denoted by uppercase names while vectors are lowercase.
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"Scalar" means that an object is a single value, not a vector or matrix.

 refers to the set of scalar real numbers

 refers to the set of n-dimensional vectors of real numbers

Addition and Scalar Multiplication
Addition and subtraction are element-wise, so you simply add or subtract each corresponding element:

To add or subtract two matrices, their dimensions must be the same.

In scalar multiplication, we simply multiply every element by the scalar value:

Matrix-Vector Multiplication
We map the column of the vector onto each row of the matrix, multiplying each element and summing the
result.

The result is a vector. The vector must be the second term of the multiplication. The number of columns of
the matrix must equal the number of rows of the vector.

An m x n matrix multiplied by an n x 1 vector results in an m x 1 vector.

Matrix-Matrix Multiplication
We multiply two matrices by breaking it into several vector multiplications and concatenating the result

An m x n matrix multiplied by an n x o matrix results in an m x o matrix. In the above example, a 3 x 2 matrix
times a 2 x 2 matrix resulted in a 3 x 2 matrix.
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To multiply two matrices, the number of columns of the �rst matrix must equal the number of rows of the
second matrix.

Matrix Multiplication Properties
Not commutative. A∗B≠B∗A

Associative. (A∗B)∗C=A∗(B∗C)

The identity matrix, when multiplied by any matrix of the same dimensions, results in the original matrix. It's
just like multiplying numbers by 1. The identity matrix simply has 1's on the diagonal (upper left to lower right
diagonal) and 0's elsewhere.

When multiplying the identity matrix after some matrix (A∗I), the square identity matrix should match the other
matrix's columns. When multiplying the identity matrix before some other matrix (I∗A), the square identity
matrix should match the other matrix's rows.

Inverse and Transpose
The inverse of a matrix A is denoted A−1. Multiplying by the inverse results in the identity matrix.

A non square matrix does not have an inverse matrix. We can compute inverses of matrices in octave with the
pinv(A) function [1] and in matlab with the inv(A) function. Matrices that don't have an inverse are singular or
degenerate.

The transposition of a matrix is like rotating the matrix 90° in clockwise direction and then reversing it. We can
compute transposition of matrices in matlab with the transpose(A) function or A':

In other words:

⎡
⎣

1
0
0

0
1
0

0
0
1

⎤
⎦

A =
⎡
⎣
a

c

e

b

d

f

⎤
⎦

= [ ]AT a

b

c

d

e

f

=Aij A
T
ji







Week 2 Lecture Notes

ML:Linear Regression with Multiple Variables
Linear regression with multiple variables is also known as "multivariate linear regression".

We now introduce notation for equations where we can have any number of input variables.

Now de�ne the multivariable form of the hypothesis function as follows, accommodating these multiple features:

In order to develop intuition about this function, we can think about  as the basic price of a house,  as the price per square meter,  as the
price per �oor, etc.  will be the number of square meters in the house,  the number of �oors, etc.

Using the de�nition of matrix multiplication, our multivariable hypothesis function can be concisely represented as:

This is a vectorization of our hypothesis function for one training example; see the lessons on vectorization to learn more.

Remark: Note that for convenience reasons in this course Mr. Ng assumes 

[Note: So that we can do matrix operations with theta and x, we will set  = 1, for all values of i. This makes the two vectors 'theta' and 

match each other element-wise (that is, have the same number of elements: n+1).]

The training examples are stored in X row-wise, like such:

You can calculate the hypothesis as a column vector of size (m x 1) with:

For the rest of these notes, and other lecture notes, X will represent a matrix of training examples  stored row-wise.

Cost function

For the parameter vector θ (of type  or in , the cost function is:

The vectorized version is:

Where  denotes the vector of all y values.

Gradient Descent for Multiple Variables

The gradient descent equation itself is generally the same form; we just have to repeat it for our 'n' features:
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In other words:

Matrix Notation

The Gradient Descent rule can be expressed as:

Where  is a column vector of the form:

The j-th component of the gradient is the summation of the product of two terms:

Sometimes, the summation of the product of two terms can be expressed as the product of two vectors.

Here, , for i = 1,...,m, represents the m elements of the j-th column,  , of the training set X.

The other term  is the vector of the deviations between the predictions  and the true values . Re-writing , we

have:

Finally, the matrix notation (vectorized) of the Gradient Descent rule is:

Feature Normalization
We can speed up gradient descent by having each of our input values in roughly the same range. This is because θ will descend quickly on small
ranges and slowly on large ranges, and so will oscillate ine�ciently down to the optimum when the variables are very uneven.

The way to prevent this is to modify the ranges of our input variables so that they are all roughly the same. Ideally:
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−0.5 ≤  ≤ 0.5

These aren't exact requirements; we are only trying to speed things up. The goal is to get all input variables into roughly one of these ranges, give
or take a few.

Two techniques to help with this are feature scaling and mean normalization. Feature scaling involves dividing the input values by the range (i.e.
the maximum value minus the minimum value) of the input variable, resulting in a new range of just 1. Mean normalization involves subtracting
the average value for an input variable from the values for that input variable, resulting in a new average value for the input variable of just zero. To
implement both of these techniques, adjust your input values as shown in this formula:

Where  is the average of all the values for feature (i) and  is the range of values (max - min), or  is the standard deviation.

Note that dividing by the range, or dividing by the standard deviation, give di�erent results. The quizzes in this course use range - the programming
exercises use standard deviation.

Example:  is housing prices with range of 100 to 2000, with a mean value of 1000. Then, .

Quiz question #1 on Feature Normalization (Week 2, Linear Regression with Multiple
Variables)

Your answer should be rounded to exactly two decimal places. Use a '.' for the decimal point, not a ','. The tricky part of this question is �guring out
which feature of which training example you are asked to normalize. Note that the mobile app doesn't allow entering a negative number (Jan 2016),
so you will need to use a browser to submit this quiz if your solution requires a negative number.

Gradient Descent Tips
Debugging gradient descent. Make a plot with number of iterations on the x-axis. Now plot the cost function, J(θ) over the number of iterations of
gradient descent. If J(θ) ever increases, then you probably need to decrease α.

Automatic convergence test. Declare convergence if J(θ) decreases by less than E in one iteration, where E is some small value such as 10−3.
However in practice it's di�cult to choose this threshold value.

It has been proven that if learning rate α is su�ciently small, then J(θ) will decrease on every iteration. Andrew Ng recommends decreasing α by
multiples of 3.

Features and Polynomial Regression
We can improve our features and the form of our hypothesis function in a couple di�erent ways.

We can combine multiple features into one. For example, we can combine  and  into a new feature  by taking ⋅ .

Polynomial Regression

Our hypothesis function need not be linear (a straight line) if that does not �t the data well.

We can change the behavior or curve of our hypothesis function by making it a quadratic, cubic or square root function (or any other form).

For example, if our hypothesis function is  then we can create additional features based on , to get the quadratic function 

 or the cubic function 

In the cubic version, we have created new features  and  where  and .

To make it a square root function, we could do: 

Note that at 2:52 and through 6:22 in the "Features and Polynomial Regression" video, the curve that Prof Ng discusses about "doesn't ever come

back down" is in reference to the hypothesis function that uses the sqrt() function (shown by the solid purple line), not the one that uses 
(shown with the dotted blue line). The quadratic form of the hypothesis function would have the shape shown with the blue dotted line if  was
negative.

One important thing to keep in mind is, if you choose your features this way then feature scaling becomes very important.

eg. if  has range 1 - 1000 then range of  becomes 1 - 1000000 and that of  becomes 1 - 1000000000.

Normal Equation
The "Normal Equation" is a method of �nding the optimum theta without iteration.
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There is no need to do feature scaling with the normal equation.

Mathematical proof of the Normal equation requires knowledge of linear algebra and is fairly involved, so you do not need to worry about the
details.

Proofs are available at these links for those who are interested:

https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)

http://eli.thegreenplace.net/2014/derivation-of-the-normal-equation-for-linear-regression

The following is a comparison of gradient descent and the normal equation:

Gradient Descent Normal Equation

Need to choose alpha No need to choose alpha

Needs many iterations No need to iterate

O ( ) O ( ), need to calculate inverse of 

Works well when n is large Slow if n is very large

With the normal equation, computing the inversion has complexity . So if we have a very large number of features, the normal equation will
be slow. In practice, when n exceeds 10,000 it might be a good time to go from a normal solution to an iterative process.

Normal Equation Noninvertibility

When implementing the normal equation in octave we want to use the 'pinv' function rather than 'inv.'

 may be noninvertible. The common causes are:

Redundant features, where two features are very closely related (i.e. they are linearly dependent)

Too many features (e.g. m ≤ n). In this case, delete some features or use "regularization" (to be explained in a later lesson).

Solutions to the above problems include deleting a feature that is linearly dependent with another or deleting one or more features when there are
too many features.

ML:Octave Tutorial

Basic Operations
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Moving Data Around
Data �les used in this section: featuresX.dat, priceY.dat

Computing on Data

%% Change Octave prompt  
PS1('>> ');
%% Change working directory in windows example:
cd 'c:/path/to/desired/directory name'
%% Note that it uses normal slashes and does not use escape characters for the 
  empty spaces.

%% elementary operations
5+6
3-2
5*8
1/2
2^6
1 == 2 % false
1 ~= 2 % true.  note, not "!="
1 && 0
1 || 0
xor(1,0)

%% variable assignment
a = 3; % semicolon suppresses output
b = 'hi';
c = 3>=1;

% Displaying them:
a = pi
disp(a)
disp(sprintf('2 decimals: %0.2f', a))
disp(sprintf('6 decimals: %0.6f', a))
format long
a
format short
a

%%  vectors and matrices
A = [1 2; 3 4; 5 6]

v = [1 2 3]
v = [1; 2; 3]
v = 1:0.1:2   % from 1 to 2, with stepsize of 0.1. Useful for plot axes
v = 1:6       % from 1 to 6, assumes stepsize of 1 (row vector)

C = 2*ones(2,3) % same as C = [2 2 2; 2 2 2]
w = ones(1,3)   % 1x3 vector of ones
w = zeros(1,3)
w = rand(1,3) % drawn from a uniform distribution 
w = randn(1,3)% drawn from a normal distribution (mean=0, var=1)
w = -6 + sqrt(10)*(randn(1,10000));  % (mean = -6, var = 10) - note: add the 
  semicolon
hist(w)    % plot histogram using 10 bins (default)
hist(w,50) % plot histogram using 50 bins
% note: if hist() crashes, try "graphics_toolkit('gnu_plot')" 

I = eye(4)   % 4x4 identity matrix

% help function
help eye
help rand
help help

%% dimensions
sz = size(A) % 1x2 matrix: [(number of rows) (number of columns)]
size(A,1) % number of rows
size(A,2) % number of cols
length(v) % size of longest dimension

%% loading data
pwd   % show current directory (current path)
cd 'C:\Users\ang\Octave files'  % change directory 
ls    % list files in current directory 
load q1y.dat   % alternatively, load('q1y.dat')
load q1x.dat
who   % list variables in workspace
whos  % list variables in workspace (detailed view) 
clear q1y      % clear command without any args clears all vars
v = q1x(1:10); % first 10 elements of q1x (counts down the columns)
save hello.mat v;  % save variable v into file hello.mat
save hello.txt v -ascii; % save as ascii
% fopen, fread, fprintf, fscanf also work  [[not needed in class]]

%% indexing
A(3,2)  % indexing is (row,col)
A(2,:)  % get the 2nd row. 
        % ":" means every element along that dimension
A(:,2)  % get the 2nd col
A([1 3],:) % print all  the elements of rows 1 and 3

A(:,2) = [10; 11; 12]     % change second column
A = [A, [100; 101; 102]]; % append column vec
A(:) % Select all elements as a column vector.

% Putting data together 
A = [1 2; 3 4; 5 6]
B = [11 12; 13 14; 15 16] % same dims as A
C = [A B]  % concatenating A and B matrices side by side
C = [A, B] % concatenating A and B matrices side by side
C = [A; B] % Concatenating A and B top and bottom
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Computing on Data

Plotting Data

Control statements: for, while, if statements

%% initialize variables
A = [1 2;3 4;5 6]
B = [11 12;13 14;15 16]
C = [1 1;2 2]
v = [1;2;3]

%% matrix operations
A * C  % matrix multiplication
A .* B % element-wise multiplication
% A .* C  or A * B gives error - wrong dimensions
A .^ 2 % element-wise square of each element in A
1./v   % element-wise reciprocal
log(v)  % functions like this operate element-wise on vecs or matrices 
exp(v)
abs(v)

-v  % -1*v

v + ones(length(v), 1)  
% v + 1  % same

A'  % matrix transpose

%% misc useful functions

% max  (or min)
a = [1 15 2 0.5]
val = max(a)
[val,ind] = max(a) % val -  maximum element of the vector a and index - index 
  value where maximum occur
val = max(A) % if A is matrix, returns max from each column

% compare values in a matrix & find
a < 3 % checks which values in a are less than 3
find(a < 3) % gives location of elements less than 3
A = magic(3) % generates a magic matrix - not much used in ML algorithms
[r,c] = find(A>=7)  % row, column indices for values matching comparison

% sum, prod
sum(a)
prod(a)
floor(a) % or ceil(a)
max(rand(3),rand(3))
max(A,[],1) -  maximum along columns(defaults to columns - max(A,[]))
max(A,[],2) - maximum along rows
A = magic(9)
sum(A,1)
sum(A,2)
sum(sum( A .* eye(9) ))
sum(sum( A .* flipud(eye(9)) ))

% Matrix inverse (pseudo-inverse)
pinv(A)        % inv(A'*A)*A'

%% plotting
t = [0:0.01:0.98];
y1 = sin(2*pi*4*t); 
plot(t,y1);
y2 = cos(2*pi*4*t);
hold on;  % "hold off" to turn off
plot(t,y2,'r');
xlabel('time');
ylabel('value');
legend('sin','cos');
title('my plot');
print -dpng 'myPlot.png'
close;           % or,  "close all" to close all figs
figure(1); plot(t, y1);
figure(2); plot(t, y2);
figure(2), clf;  % can specify the figure number
subplot(1,2,1);  % Divide plot into 1x2 grid, access 1st element
plot(t,y1);
subplot(1,2,2);  % Divide plot into 1x2 grid, access 2nd element
plot(t,y2);
axis([0.5 1 -1 1]);  % change axis scale

%% display a matrix (or image) 
figure;
imagesc(magic(15)), colorbar, colormap gray;
% comma-chaining function calls.  
a=1,b=2,c=3
a=1;b=2;c=3;
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Functions
To create a function, type the function code in a text editor (e.g. gedit or notepad), and save the �le as "functionName.m"

Example function:

To call the function in Octave, do either:

1) Navigate to the directory of the functionName.m �le and call the function:

2) Add the directory of the function to the load path and save it:You should not use addpath/savepath for any of the assignments in this
course. Instead use 'cd' to change the current working directory. Watch the video on submitting assignments in week 2 for instructions.

Octave's functions can return more than one value:

Call the above function this way:

Vectorization
Vectorization is the process of taking code that relies on loops and converting it into matrix operations. It is more e�cient, more elegant, and
more concise.

As an example, let's compute our prediction from a hypothesis. Theta is the vector of �elds for the hypothesis and x is a vector of variables.

With loops:

v = zeros(10,1);
for i=1:10, 
    v(i) = 2^i;
end;
% Can also use "break" and "continue" inside for and while loops to control 
  execution.

i = 1;
while i <= 5,
  v(i) = 100; 
  i = i+1;
end

i = 1;
while true, 
  v(i) = 999; 
  i = i+1;
  if i == 6,
    break;
  end;
end

if v(1)==1,
  disp('The value is one!');
elseif v(1)==2,
  disp('The value is two!');
else
  disp('The value is not one or two!');
end

function y = squareThisNumber(x)

y = x^2;

    % Navigate to directory:
    cd /path/to/function

    % Call the function:
    functionName(args)

    % To add the path for the current session of Octave:
    addpath('/path/to/function/')

    % To remember the path for future sessions of Octave, after executing 
      addpath above, also do:
    savepath

    function [y1, y2] = squareandCubeThisNo(x)
    y1 = x^2
    y2 = x^3

    [a,b] = squareandCubeThisNo(x)

prediction = 0.0;
for j = 1:n+1,
  prediction += theta(j) * x(j);
end;
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With vectorization:

If you recall the de�nition multiplying vectors, you'll see that this one operation does the element-wise multiplication and overall sum in a very
concise notation.

Working on and Submitting Programming Exercises
1. Download and extract the assignment's zip file.

2. Edit the proper file 'a.m', where a is the name of the exercise you're working on.

3. Run octave and cd to the assignment's extracted directory

4. Run the 'submit' function and enter the assignment number, your email, and a password (found on the top of the "Programming Exercises" page on
coursera)
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Week 3 Lecture Notes

ML:Logistic Regression
Now we are switching from regression problems to classi�cation problems. Don't be confused by the name "Logistic Regression"; it is named that
way for historical reasons and is actually an approach to classi�cation problems, not regression problems.

Binary Classi�cation
Instead of our output vector y being a continuous range of values, it will only be 0 or 1.

y∈{0,1}

Where 0 is usually taken as the "negative class" and 1 as the "positive class", but you are free to assign any representation to it.

We're only doing two classes for now, called a "Binary Classi�cation Problem."

One method is to use linear regression and map all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0. This method doesn't work well
because classi�cation is not actually a linear function.

Hypothesis Representation

Our hypothesis should satisfy:

Our new form uses the "Sigmoid Function," also called the "Logistic Function":

The function g(z), shown here, maps any real number to the (0, 1) interval, making it useful for transforming an arbitrary-valued function into a
function better suited for classi�cation. Try playing with interactive plot of sigmoid function : (https://www.desmos.com/calculator/bgontvxotm).

We start with our old hypothesis (linear regression), except that we want to restrict the range to 0 and 1. This is accomplished by plugging  into
the Logistic Function.

 will give us the probability that our output is 1. For example,  gives us the probability of 70% that our output is 1.

Our probability that our prediction is 0 is just the complement of our probability that it is 1 (e.g. if probability that it is 1 is 70%, then the probability
that it is 0 is 30%).

Decision Boundary
In order to get our discrete 0 or 1 classi�cation, we can translate the output of the hypothesis function as follows:

The way our logistic function g behaves is that when its input is greater than or equal to zero, its output is greater than or equal to 0.5:

0 ≤ (x) ≤ 1hθ

(x) = g( x)hθ θT

z = xθT

g(z) =
1

1 + e−z

xθT

hθ (x) = 0.7hθ

(x) = P(y = 1|x;θ) = 1 − P(y = 0|x;θ)hθ

P(y = 0|x;θ) + P(y = 1|x;θ) = 1

(x) ≥ 0.5 → y = 1hθ

(x) < 0.5 → y = 0hθ



Remember.-

So if our input to g is , then that means:

From these statements we can now say:

The decision boundary is the line that separates the area where y = 0 and where y = 1. It is created by our hypothesis function.

Example:

In this case, our decision boundary is a straight vertical line placed on the graph where , and everything to the left of that denotes y = 1,
while everything to the right denotes y = 0.

Again, the input to the sigmoid function g(z) (e.g. ) doesn't need to be linear, and could be a function that describes a circle (e.g. 

) or any shape to �t our data.

Cost Function
We cannot use the same cost function that we use for linear regression because the Logistic Function will cause the output to be wavy, causing
many local optima. In other words, it will not be a convex function.

Instead, our cost function for logistic regression looks like:

g(z) ≥ 0.5
when z ≥ 0

z = 0, = 1 ⇒ g(z) = 1/2e0

z → ∞, → 0 ⇒ g(z) = 1e−∞

z → −∞, → ∞ ⇒ g(z) = 0e∞

XθT

(x) = g( x) ≥ 0.5hθ θ
T

when x ≥ 0θT

x ≥ 0 ⇒ y = 1θT

x < 0 ⇒ y = 0θ
T

θ =
⎡
⎣

5
−1
0

⎤
⎦

y = 1 if 5 + (−1) + 0 ≥ 0x1 x2

5 − ≥ 0x1

− ≥ −5x1

≤ 5x1

= 5x1

XθT

z = + +θ0 θ1x2
1 θ2x2

2

J(θ) = Cost( ( ), )
1

m
∑
i=1

m

hθ x(i) y (i)

Cost( (x),y) = −log( (x))hθ hθ

Cost( (x),y) = −log(1 − (x))hθ hθ

if y = 1
if y = 0



The more our hypothesis is o� from y, the larger the cost function output. If our hypothesis is equal to y, then our cost is 0:

If our correct answer 'y' is 0, then the cost function will be 0 if our hypothesis function also outputs 0. If our hypothesis approaches 1, then the cost
function will approach in�nity.

If our correct answer 'y' is 1, then the cost function will be 0 if our hypothesis function outputs 1. If our hypothesis approaches 0, then the cost
function will approach in�nity.

Note that writing the cost function in this way guarantees that J(θ) is convex for logistic regression.

Simpli�ed Cost Function and Gradient Descent
We can compress our cost function's two conditional cases into one case:

Notice that when y is equal to 1, then the second term  will be zero and will not a�ect the result. If y is equal to 0, then the
�rst term  will be zero and will not a�ect the result.

We can fully write out our entire cost function as follows:

A vectorized implementation is:

Gradient Descent

Remember that the general form of gradient descent is:

We can work out the derivative part using calculus to get:

Notice that this algorithm is identical to the one we used in linear regression. We still have to simultaneously update all values in theta.

A vectorized implementation is:

Cost( (x),y) = 0 if  (x) = yhθ hθ

Cost( (x),y) → ∞ if y = 0 and (x) → 1hθ hθ

Cost( (x),y) → ∞ if y = 1 and (x) → 0hθ hθ

Cost( (x),y) = −y log( (x)) − (1 − y) log(1 − (x))hθ hθ hθ

(1 − y) log(1 − (x))hθ

−y log( (x))hθ

J(θ) = − [ log( ( )) + (1 − ) log(1 − ( ))]1
m
∑
i=1

m

y (i) hθ x(i) y (i) hθ x(i)

h = g(Xθ)

J(θ) = ⋅(− log(h) − (1 − y log(1 − h))1

m
yT )T

Repeat {

:= − α J(θ)θj θj

∂

∂θj

}

Repeat {

:= − ( ( ) − )θj θj

α

m
∑
i=1

m

hθ x(i) y (i) x
(i)
j

}

θ := θ − (g(Xθ) − )α
m

XT y ⃗ 



Partial derivative of J(θ)

First calculate derivative of sigmoid function (it will be useful while �nding partial derivative of J(θ)):

Now we are ready to �nd out resulting partial derivative:

The vectorized version;

Advanced Optimization
"Conjugate gradient", "BFGS", and "L-BFGS" are more sophisticated, faster ways to optimize θ that can be used instead of gradient descent. A. Ng
suggests not to write these more sophisticated algorithms yourself (unless you are an expert in numerical computing) but use the libraries instead,
as they're already tested and highly optimized. Octave provides them.

We �rst need to provide a function that evaluates the following two functions for a given input value θ:

We can write a single function that returns both of these:

Then we can use octave's "fminunc()" optimization algorithm along with the "optimset()" function that creates an object containing the options we
want to send to "fminunc()". (Note: the value for MaxIter should be an integer, not a character string - errata in the video at 7:30)

We give to the function "fminunc()" our cost function, our initial vector of theta values, and the "options" object that we created beforehand.

σ(x)′ = = = = = =( )1

1 + e−x

′ −(1 + e−x)′

(1 + e−x)2

− − (1′ e−x)′

(1 + e−x)2

0 − (−x ( ))′
e−x

(1 + e−x)2

−(−1)( )e−x

(1 + e−x)2

e−x

(1 + e−x)2

= ( )( ) = σ(x)( ) = σ(x)( − ) = σ(x)(1 − σ(x))
1

1 + e−x

e−x

1 + e−x

+1 − 1 + e−x

1 + e−x

1 + e−x

1 + e−x

1

1 + e−x

J(θ)
∂

∂θj

= [ log( ( )) + (1 − )log(1 − ( ))]∂

∂θj

−1

m
∑
i=1

m

y (i) hθ x(i) y (i) hθ x(i)

= − [ log( ( )) + (1 − ) log(1 − ( ))]1

m
∑
i=1

m

y (i) ∂

∂θj

hθ x(i) y (i) ∂

∂θj

hθ x(i)

= − +
1

m
∑
i=1

m ⎡
⎣⎢

( )y (i) ∂
∂θj

hθ x(i)

( )hθ x(i)

(1 − ) (1 − ( ))y (i) ∂
∂θj

hθ x(i)

1 − ( )hθ x(i)

⎤
⎦⎥

= − +
1
m
∑
i=1

m ⎡
⎣⎢

σ( )y (i) ∂
∂θj

θT x(i)

( )hθ x(i)

(1 − ) (1 − σ( ))y (i) ∂
∂θj

θT x(i)

1 − ( )hθ x(i)

⎤
⎦⎥

= − +
1

m
∑
i=1

m ⎡
⎣⎢

σ( )(1 − σ( ))y (i) θT x(i) θT x(i) ∂
∂θj

θT x(i)

( )hθ x(i)

−(1 − )σ( )(1 − σ( ))y (i) θT x(i) θT x(i) ∂
∂θj

θT x(i)

1 − ( )hθ x(i)

⎤
⎦⎥

= − −
1

m
∑
i=1

m ⎡
⎣⎢

( )(1 − ( ))y (i) hθ x(i) hθ x(i) ∂
∂θj

θT x(i)

( )hθ x(i)

(1 − ) ( )(1 − ( ))y (i) hθ x(i) hθ x(i) ∂
∂θj

θT x(i)

1 − ( )hθ x(i)

⎤
⎦⎥

= − [ (1 − ( )) − (1 − ) ( ) ]1

m
∑
i=1

m

y (i) hθ x(i) x
(i)
j y (i) hθ x(i) x

(i)
j

= − [ (1 − ( )) − (1 − ) ( )]1

m
∑
i=1

m

y (i) hθ x(i) y (i) hθ x(i) x
(i)
j

= − [ − ( ) − ( ) + ( )]1

m
∑
i=1

m

y (i) y (i) hθ x(i) hθ x(i) y (i) hθ x(i) x
(i)
j

= − [ − ( )]1

m
∑
i=1

m

y (i) hθ x(i) x
(i)
j

= [ ( ) − ]1

m
∑
i=1

m

hθ x(i) y (i) x
(i)
j

∇J(θ) = ⋅ ⋅ (g(X ⋅ θ) − )1
m

XT y ⃗ 

J(θ)

J(θ)
∂

∂θj

function [jVal, gradient] = costFunction(theta)
  jVal = [...code to compute J(theta)...];
  gradient = [...code to compute derivative of J(theta)...];
end

options = optimset('GradObj', 'on', 'MaxIter', 100);
      initialTheta = zeros(2,1);
      [optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, 
        options);

1
2
3
4

1
2
3

4



Multiclass Classi�cation: One-vs-all
Now we will approach the classi�cation of data into more than two categories. Instead of y = {0,1} we will expand our de�nition so that y = {0,1...n}.

In this case we divide our problem into n+1 (+1 because the index starts at 0) binary classi�cation problems; in each one, we predict the probability
that 'y' is a member of one of our classes.

We are basically choosing one class and then lumping all the others into a single second class. We do this repeatedly, applying binary logistic
regression to each case, and then use the hypothesis that returned the highest value as our prediction.

ML:Regularization
The Problem of Over�tting

Regularization is designed to address the problem of over�tting.

High bias or under�tting is when the form of our hypothesis function h maps poorly to the trend of the data. It is usually caused by a function that
is too simple or uses too few features. eg. if we take  then we are making an initial assumption that a linear model will
�t the training data well and will be able to generalize but that may not be the case.

At the other extreme, over�tting or high variance is caused by a hypothesis function that �ts the available data but does not generalize well to
predict new data. It is usually caused by a complicated function that creates a lot of unnecessary curves and angles unrelated to the data.

This terminology is applied to both linear and logistic regression. There are two main options to address the issue of over�tting:

1) Reduce the number of features:

a) Manually select which features to keep.

b) Use a model selection algorithm (studied later in the course).

2) Regularization

Keep all the features, but reduce the parameters .

Regularization works well when we have a lot of slightly useful features.

Cost Function
If we have over�tting from our hypothesis function, we can reduce the weight that some of the terms in our function carry by increasing their cost.

Say we wanted to make the following function more quadratic:

We'll want to eliminate the in�uence of  and  . Without actually getting rid of these features or changing the form of our hypothesis, we
can instead modify our cost function:

We've added two extra terms at the end to in�ate the cost of  and . Now, in order for the cost function to get close to zero, we will have to
reduce the values of  and  to near zero. This will in turn greatly reduce the values of  and  in our hypothesis function.

We could also regularize all of our theta parameters in a single summation:

The λ, or lambda, is the regularization parameter. It determines how much the costs of our theta parameters are in�ated. You can visualize the
e�ect of regularization in this interactive plot : https://www.desmos.com/calculator/1hexc8ntqp

Using the above cost function with the extra summation, we can smooth the output of our hypothesis function to reduce over�tting. If lambda is
chosen to be too large, it may smooth out the function too much and cause under�tting.

y ∈ {0,1. . .n}

(x) = P(y = 0|x;θ)h
(0)
θ

(x) = P(y = 1|x;θ)h
(1)
θ

⋯

(x) = P(y = n|x;θ)h
(n)
θ

prediction = ( (x))max
i

h
(i)
θ

(x) = + +hθ θ0 θ1x1 θ2x2

θj

+ x + + +θ0 θ1 θ2x2 θ3x3 θ4x4

θ3x3 θ4x4

mi   ( ( ) − + 1000 ⋅ + 1000 ⋅nθ

1

2m
∑m

i=1 hθ x(i) y(i))2
θ2

3 θ2
4

θ3 θ4

θ3 θ4 θ3x3 θ4x4

mi    [ ( ( ) − + λ  ]nθ

1

2m
∑m

i=1 hθ x(i) y (i) )2 ∑n
j=1 θ2

j



Regularized Linear Regression
We can apply regularization to both linear regression and logistic regression. We will approach linear regression �rst.

Gradient Descent

We will modify our gradient descent function to separate out  from the rest of the parameters because we do not want to penalize .

The term  performs our regularization.

With some manipulation our update rule can also be represented as:

The �rst term in the above equation,  will always be less than 1. Intuitively you can see it as reducing the value of  by some amount on

every update.

Notice that the second term is now exactly the same as it was before.

Normal Equation

Now let's approach regularization using the alternate method of the non-iterative normal equation.

To add in regularization, the equation is the same as our original, except that we add another term inside the parentheses:

L is a matrix with 0 at the top left and 1's down the diagonal, with 0's everywhere else. It should have dimension (n+1)×(n+1). Intuitively, this is the
identity matrix (though we are not including ), multiplied with a single real number λ.

Recall that if m ≤ n, then  is non-invertible. However, when we add the term λ⋅L, then  + λ⋅L becomes invertible.

Regularized Logistic Regression
We can regularize logistic regression in a similar way that we regularize linear regression. Let's start with the cost function.

Cost Function

Recall that our cost function for logistic regression was:

We can regularize this equation by adding a term to the end:

Note Well: The second sum,  means to explicitly exclude the bias term, . I.e. the θ vector is indexed from 0 to n (holding n+1 values, 

 through ), and this sum explicitly skips , by running from 1 to n, skipping 0.

Gradient Descent

Just like with linear regression, we will want to separately update  and the rest of the parameters because we do not want to regularize .

θ0 θ0

Repeat {

     := − α    ( ( ) − )θ0 θ0
1

m
∑
i=1

m

hθ x(i) y (i) x
(i)
0

     := − α [(   ( ( ) − ) )+ ]θj θj

1

m
∑
i=1

m

hθ x(i) y (i) x
(i)
j

λ

m
θj

}

          j ∈ {1,2...n}
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This is identical to the gradient descent function presented for linear regression.

Initial Ones Feature Vector

Constant Feature

As it turns out it is crucial to add a constant feature to your pool of features before starting any training of your machine. Normally that feature is
just a set of ones for all your training examples.

Concretely, if X is your feature matrix then  is a vector with ones.

Below are some insights to explain the reason for this constant feature. The �rst part draws some analogies from electrical engineering concept,
the second looks at understanding the ones vector by using a simple machine learning example.

Electrical Engineering

From electrical engineering, in particular signal processing, this can be explained as DC and AC.

The initial feature vector X without the constant term captures the dynamics of your model. That means those features particularly record changes
in your output y - in other words changing some feature  where  will have a change on the output y. AC is normally made out of many
components or harmonics; hence we also have many features (yet we have one DC term).

The constant feature represents the DC component. In control engineering this can also be the steady state.

Interestingly removing the DC term is easily done by di�erentiating your signal - or simply taking a di�erence between consecutive points of a
discrete signal (it should be noted that at this point the analogy is implying time-based signals - so this will also make sense for machine learning
application with a time basis - e.g. forecasting stock exchange trends).

Another interesting note: if you were to play and AC+DC signal as well as an AC only signal where both AC components are the same then they
would sound exactly the same. That is because we only hear changes in signals and Δ(AC+DC)=Δ(AC).

Housing price example

Suppose you design a machine which predicts the price of a house based on some features. In this case what does the ones vector help with?

Let's assume a simple model which has features that are directly proportional to the expected price i.e. if feature Xi increases so the expected price
y will also increase. So as an example we could have two features: namely the size of the house in [m2], and the number of rooms.

When you train your machine you will start by prepending a ones vector . You may then �nd after training that the weight for your initial feature
of ones is some value θ0. As it turns, when applying your hypothesis function  - in the case of the initial feature you will just be multiplying by
a constant (most probably θ0 if you not applying any other functions such as sigmoids). This constant (let's say it's  for argument's sake) is the DC
term. It is a constant that doesn't change.

But what does it mean for this example? Well, let's suppose that someone knows that you have a working model for housing prices. It turns out
that for this example, if they ask you how much money they can expect if they sell the house you can say that they need at least θ0 dollars (or
rands) before you even use your learning machine. As with the above analogy, your constant θ0 is somewhat of a steady state where all your inputs
are zeros. Concretely, this is the price of a house with no rooms which takes up no space.

However this explanation has some holes because if you have some features which decrease the price e.g. age, then the DC term may not be an
absolute minimum of the price. This is because the age may make the price go even lower.

Theoretically if you were to train a machine without a ones vector , it's output may not match the output of a machine which had a ones
vector . However,  may have exactly the same trend as  i.e. if you were to plot both machine's output you would �nd that
they may look exactly the same except that it seems one output has just been shifted (by a constant). With reference to the housing price problem:
suppose you make predictions on two houses  and  using both machines. It turns out while the outputs from the two machines
would di�erent, the di�erence between houseA and houseB's predictions according to both machines could be exactly the same. Realistically, that
means a machine trained without the ones vector  could actually be very useful if you have just one benchmark point. This is because you can
�nd out the missing constant by simply taking a di�erence between the machine's prediction an actual price - then when making predictions you
simply add that constant to what even output you get. That is: if  is your benchmark then the DC component is simply 

A more simple and crude way of putting it is that the DC component of your model represents the inherent bias of the model. The other features
then cause tension in order to move away from that bias position.

Kholofelo Moyaba
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A simpler approach

A "bias" feature is simply a way to move the "best �t" learned vector to better �t the data. For example, consider a learning problem with a single
feature . The formula without the  feature is just . This is graphed as a line that always passes through the origin, with
slope y/theta. The  term allows the line to pass through a di�erent point on the y axis. This will almost always give a better �t. Not all best �t lines
go through the origin (0,0) right?

Joe Cotton

X1 X0 thet ∗ = ya1 X1

x0



Week 4 Lecture Notes

ML:Neural Networks: Representation

Non-linear Hypotheses
Performing linear regression with a complex set of data with many features is very unwieldy. Say you wanted to create a hypothesis from three (3)
features that included all the quadratic terms:

That gives us 6 features. The exact way to calculate how many features for all polynomial terms is the combination function with repetition:

http://www.mathsisfun.com/combinatorics/combinations-permutations.html . In this case we are taking all two-element combinations of

three features:  = . (Note: you do not have to know these formulas, I just found it helpful for understanding).

For 100 features, if we wanted to make them quadratic we would get  resulting new features.

We can approximate the growth of the number of new features we get with all quadratic terms with . And if you wanted to include all

cubic terms in your hypothesis, the features would grow asymptotically at . These are very steep growths, so as the number of our features
increase, the number of quadratic or cubic features increase very rapidly and becomes quickly impractical.

Example: let our training set be a collection of 50 x 50 pixel black-and-white photographs, and our goal will be to classify which ones are photos of
cars. Our feature set size is then n = 2500 if we compare every pair of pixels.

Now let's say we need to make a quadratic hypothesis function. With quadratic features, our growth is . So our total features will be about

, which is very impractical.

Neural networks o�ers an alternate way to perform machine learning when we have complex hypotheses with many features.

Neurons and the Brain
Neural networks are limited imitations of how our own brains work. They've had a big recent resurgence because of advances in computer
hardware.

There is evidence that the brain uses only one "learning algorithm" for all its di�erent functions. Scientists have tried cutting (in an animal brain) the
connection between the ears and the auditory cortex and rewiring the optical nerve with the auditory cortex to �nd that the auditory cortex literally
learns to see.

This principle is called "neuroplasticity" and has many examples and experimental evidence.

Model Representation I
Let's examine how we will represent a hypothesis function using neural networks.

At a very simple level, neurons are basically computational units that take input (dendrites) as electrical input (called "spikes") that are channeled
to outputs (axons).

In our model, our dendrites are like the input features , and the output is the result of our hypothesis function:

In this model our x0 input node is sometimes called the "bias unit." It is always equal to 1.

In neural networks, we use the same logistic function as in classi�cation: . In neural networks however we sometimes call it a sigmoid

(logistic) activation function.

Our "theta" parameters are sometimes instead called "weights" in the neural networks model.

Visually, a simplistic representation looks like:
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Our input nodes (layer 1) go into another node (layer 2), and are output as the hypothesis function.

The �rst layer is called the "input layer" and the �nal layer the "output layer," which gives the �nal value computed on the hypothesis.

We can have intermediate layers of nodes between the input and output layers called the "hidden layer."

We label these intermediate or "hidden" layer nodes  and call them "activation units."

If we had one hidden layer, it would look visually something like:

The values for each of the "activation" nodes is obtained as follows:

This is saying that we compute our activation nodes by using a 3×4 matrix of parameters. We apply each row of the parameters to our inputs to
obtain the value for one activation node. Our hypothesis output is the logistic function applied to the sum of the values of our activation nodes,

which have been multiplied by yet another parameter matrix  containing the weights for our second layer of nodes.

Each layer gets its own matrix of weights, .

The dimensions of these matrices of weights is determined as follows:

The +1 comes from the addition in  of the "bias nodes,"  and . In other words the output nodes will not include the bias nodes while the

inputs will.

Example: layer 1 has 2 input nodes and layer 2 has 4 activation nodes. Dimension of  is going to be 4×3 where  and , so 

.

Model Representation II
In this section we'll do a vectorized implementation of the above functions. We're going to de�ne a new variable  that encompasses the

parameters inside our g function. In our previous example if we replaced the variable z for all the parameters we would get:

In other words, for layer j=2 and node k, the variable z will be:

The vector representation of x and  is:
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Setting , we can rewrite the equation as:

We are multiplying our matrix  with dimensions  (where  is the number of our activation nodes) by our vector  with

height (n+1). This gives us our vector  with height .

Now we can get a vector of our activation nodes for layer j as follows:

Where our function g can be applied element-wise to our vector .

We can then add a bias unit (equal to 1) to layer j after we have computed . This will be element  and will be equal to 1.

To compute our �nal hypothesis, let's �rst compute another z vector:

We get this �nal z vector by multiplying the next theta matrix after  with the values of all the activation nodes we just got.

This last theta matrix  will have only one row so that our result is a single number.

We then get our �nal result with:

Notice that in this last step, between layer j and layer j+1, we are doing exactly the same thing as we did in logistic regression.

Adding all these intermediate layers in neural networks allows us to more elegantly produce interesting and more complex non-linear hypotheses.

Examples and Intuitions I
A simple example of applying neural networks is by predicting  AND , which is the logical 'and' operator and is only true if both  and  are
1.

The graph of our functions will look like:

Remember that  is our bias variable and is always 1.

Let's set our �rst theta matrix as:

This will cause the output of our hypothesis to only be positive if both  and  are 1. In other words:

So we have constructed one of the fundamental operations in computers by using a small neural network rather than using an actual AND gate.
Neural networks can also be used to simulate all the other logical gates.

Examples and Intuitions II
The  matrices for AND, NOR, and OR are:
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We can combine these to get the XNOR logical operator (which gives 1 if  and  are both 0 or both 1).

For the transition between the �rst and second layer, we'll use a  matrix that combines the values for AND and NOR:

For the transition between the second and third layer, we'll use a  matrix that uses the value for OR:

Let's write out the values for all our nodes:

And there we have the XNOR operator using two hidden layers!

Multiclass Classi�cation
To classify data into multiple classes, we let our hypothesis function return a vector of values. Say we wanted to classify our data into one of four
�nal resulting classes:

Our �nal layer of nodes, when multiplied by its theta matrix, will result in another vector, on which we will apply the g() logistic function to get a
vector of hypothesis values.

Our resulting hypothesis for one set of inputs may look like:

In which case our resulting class is the third one down, or .

We can de�ne our set of resulting classes as y:

Our �nal value of our hypothesis for a set of inputs will be one of the elements in y.
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Week 5 Lecture Notes

ML:Neural Networks: Learning

Cost Function
Let's �rst de�ne a few variables that we will need to use:

a) L= total number of layers in the network

b)  = number of units (not counting bias unit) in layer l

c) K= number of output units/classes

Recall that in neural networks, we may have many output nodes. We denote  as being a hypothesis that results in the  output.

Our cost function for neural networks is going to be a generalization of the one we used for logistic regression.

Recall that the cost function for regularized logistic regression was:

For neural networks, it is going to be slightly more complicated:

We have added a few nested summations to account for our multiple output nodes. In the �rst part of the equation, between the square brackets,
we have an additional nested summation that loops through the number of output nodes.

In the regularization part, after the square brackets, we must account for multiple theta matrices. The number of columns in our current theta
matrix is equal to the number of nodes in our current layer (including the bias unit). The number of rows in our current theta matrix is equal to the
number of nodes in the next layer (excluding the bias unit). As before with logistic regression, we square every term.

Note:

the double sum simply adds up the logistic regression costs calculated for each cell in the output layer; and

the triple sum simply adds up the squares of all the individual Θs in the entire network.

the i in the triple sum does not refer to training example i

Backpropagation Algorithm
"Backpropagation" is neural-network terminology for minimizing our cost function, just like what we were doing with gradient descent in logistic
and linear regression.

Our goal is to compute:

That is, we want to minimize our cost function J using an optimal set of parameters in theta.

In this section we'll look at the equations we use to compute the partial derivative of J(Θ):

In back propagation we're going to compute for every node:

 = "error" of node j in layer l

Recall that  is activation node j in layer l.
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For the last layer, we can compute the vector of delta values with:

Where L is our total number of layers and  is the vector of outputs of the activation units for the last layer. So our "error values" for the last
layer are simply the di�erences of our actual results in the last layer and the correct outputs in y.

To get the delta values of the layers before the last layer, we can use an equation that steps us back from right to left:

The delta values of layer l are calculated by multiplying the delta values in the next layer with the theta matrix of layer l. We then element-wise
multiply that with a function called g', or g-prime, which is the derivative of the activation function g evaluated with the input values given by z(l).

The g-prime derivative terms can also be written out as:

The full back propagation equation for the inner nodes is then:

A. Ng states that the derivation and proofs are complicated and involved, but you can still implement the above equations to do back propagation
without knowing the details.

We can compute our partial derivative terms by multiplying our activation values and our error values for each training example t:

This however ignores regularization, which we'll deal with later.

Note:  and  are vectors with  elements. Similarly,  is a vector with  elements. Multiplying them produces a matrix that is  by 

 which is the same dimension as . That is, the process produces a gradient term for every element in . (Actually,  has  + 1 column,
so the dimensionality is not exactly the same).

We can now take all these equations and put them together into a backpropagation algorithm:

Back propagation Algorithm

Given training set 

Set  := 0 for all (l,i,j)

For training example t =1 to m:

Set 

Perform forward propagation to compute  for l=2,3,…,L

Using , compute 

Compute  using 

 or with vectorization, 

 If j≠0 NOTE: Typo in lecture slide omits outside parentheses. This version is correct.

 If j=0

The capital-delta matrix is used as an "accumulator" to add up our values as we go along and eventually compute our partial derivative.

The actual proof is quite involved, but, the  terms are the partial derivatives and the results we are looking for:

Backpropagation Intuition
The cost function is:
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If we consider simple non-multiclass classi�cation (k = 1) and disregard regularization, the cost is computed with:

More intuitively you can think of that equation roughly as:

Intuitively,  is the "error" for  (unit j in layer l)

More formally, the delta values are actually the derivative of the cost function:

Recall that our derivative is the slope of a line tangent to the cost function, so the steeper the slope the more incorrect we are.

Note: In lecture, sometimes i is used to index a training example. Sometimes it is used to index a unit in a layer. In the Back Propagation Algorithm
described here, t is used to index a training example rather than overloading the use of i.

Implementation Note: Unrolling Parameters
With neural networks, we are working with sets of matrices:

In order to use optimizing functions such as "fminunc()", we will want to "unroll" all the elements and put them into one long vector:

If the dimensions of Theta1 is 10x11, Theta2 is 10x11 and Theta3 is 1x11, then we can get back our original matrices from the "unrolled" versions as
follows:

NOTE: The lecture slides show an example neural network with 3 layers. However, 3 theta matrices are de�ned: Theta1, Theta2, Theta3. There
should be only 2 theta matrices: Theta1 (10 x 11), Theta2 (1 x 11).

Gradient Checking
Gradient checking will assure that our backpropagation works as intended.

We can approximate the derivative of our cost function with:

With multiple theta matrices, we can approximate the derivative with respect to  as follows:

A good small value for  (epsilon), guarantees the math above to become true. If the value be much smaller, may we will end up with numerical

problems. The professor Andrew usually uses the value .

We are only adding or subtracting epsilon to the  matrix. In octave we can do it as follows:

J(θ) = − [   log( ( ) + (1 − )  log(1 − ( )]+ (
1

m
∑
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∑
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θ
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cost(t) =   log( ( )) + (1 − )  log(1 − ( ))y (t) hθ x(t) y (t) hθ x(t)

cost(t) ≈ ( ( ) −hθ x(t) y (t))2

δ
(l)
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(l)
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(l)
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∂
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(l)
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, , ,…Θ(1) Θ(2) Θ(3)
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J(Θ) ≈
∂

∂Θ

J(Θ + ϵ) − J(Θ − ϵ)

2ϵ

Θj

J(Θ) ≈
∂

∂Θj

J( ,…, + ϵ,…, ) − J( ,…, − ϵ,…, )Θ1 Θj Θn Θ1 Θj Θn

2ϵ

ϵ

ϵ = 10−4

Thetaj

thetaVector = [ Theta1(:); Theta2(:); Theta3(:); ]
deltaVector = [ D1(:); D2(:); D3(:) ]

Theta1 = reshape(thetaVector(1:110),10,11)
Theta2 = reshape(thetaVector(111:220),10,11)
Theta3 = reshape(thetaVector(221:231),1,11)
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We then want to check that gradApprox ≈ deltaVector.

Once you've veri�ed once that your backpropagation algorithm is correct, then you don't need to compute gradApprox again. The code to compute
gradApprox is very slow.

Random Initialization
Initializing all theta weights to zero does not work with neural networks. When we backpropagate, all nodes will update to the same value
repeatedly.

Instead we can randomly initialize our weights:

Initialize each  to a random value between :

rand(x,y) will initialize a matrix of random real numbers between 0 and 1. (Note: this epsilon is unrelated to the epsilon from Gradient Checking)

Why use this method? This paper may be useful: https://web.stanford.edu/class/ee373b/nninitialization.pdf

Putting it Together
First, pick a network architecture; choose the layout of your neural network, including how many hidden units in each layer and how many layers
total.

Number of input units = dimension of features 

Number of output units = number of classes

Number of hidden units per layer = usually more the better (must balance with cost of computation as it increases with more hidden units)

Defaults: 1 hidden layer. If more than 1 hidden layer, then the same number of units in every hidden layer.

Training a Neural Network

1. Randomly initialize the weights

2. Implement forward propagation to get 

3. Implement the cost function

4. Implement backpropagation to compute partial derivatives

5. Use gradient checking to confirm that your backpropagation works. Then disable gradient checking.

6. Use gradient descent or a built-in optimization function to minimize the cost function with the weights in theta.

When we perform forward and back propagation, we loop on every training example:

Bonus: Tutorial on How to classify your own images of digits
This tutorial will guide you on how to use the classi�er provided in exercise 3 to classify you own images like this:

Θ(l)
ij [−ϵ,ϵ]

ϵ =
6√

Loutput + Linput
− −−−−−−−−−−−−−

√

= 2ϵ rand(Loutput,Linput + 1) − ϵΘ(l)

x(i)

( )hθ x(i)

epsilon = 1e-4;
for i = 1:n,
  thetaPlus = theta;
  thetaPlus(i) += epsilon;
  thetaMinus = theta;
  thetaMinus(i) -= epsilon;
  gradApprox(i) = (J(thetaPlus) - J(thetaMinus))/(2*epsilon)
end;

If the dimensions of Theta1 is 10x11, Theta2 is 10x11 and Theta3 is 1x11.

Theta1 = rand(10,11) * (2 * INIT_EPSILON) - INIT_EPSILON;
Theta2 = rand(10,11) * (2 * INIT_EPSILON) - INIT_EPSILON;
Theta3 = rand(1,11) * (2 * INIT_EPSILON) - INIT_EPSILON;

for i = 1:m,
   Perform forward propagation and backpropagation using example (x(i),y(i))
   (Get activations a(l) and delta terms d(l) for l = 2,...,L
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It will also explain how the images are converted thru several formats to be processed and displayed.

Introduction

The classi�er provided expects 20 x 20 pixels black and white images converted in a row vector of 400 real numbers like this

Each pixel is represented by a real number between -1.0 to 1.0, meaning -1.0 equal black and 1.0 equal white (any number in between is a shade of
gray, and number 0.0 is exactly the middle gray).

.jpg and color RGB images

The most common image format that can be read by Octave is .jpg using function that outputs a three-dimensional matrix of integer numbers
from 0 to 255, representing the height x width x 3 integers as indexes of a color map for each pixel (explaining color maps is beyond scope).

Convert to Black & White

A common way to convert color images to black & white, is to convert them to a YIQ standard and keep only the Y component that represents the
luma information (black & white). I and Q represent the chrominance information (color).Octave has a function rgb2ntsc() that outputs a similar
three-dimensional matrix but of real numbers from -1.0 to 1.0, representing the height x width x 3 (Y luma, I in-phase, Q quadrature) intensity for
each pixel.

To obtain the Black & White component just discard the I and Q matrices. This leaves a two-dimensional matrix of real numbers from -1.0 to 1.0
representing the height x width pixels black & white values.

[ 0.14532, 0.12876, ...]

Image3DmatrixRGB = imread("myOwnPhoto.jpg");

Image3DmatrixYIQ = rgb2ntsc(MyImageRGB);
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Cropping to square image

It is useful to crop the original image to be as square as possible. The way to crop a matrix is by selecting an area inside the original B&W image
and copy it to a new matrix. This is done by selecting the rows and columns that de�ne the area. In other words, it is copying a rectangular subset
of the matrix like this:

Cropping does not have to be all the way to a square.It could be cropping just a percentage of the way to a squareso you can leave more of the
image intact. The next step of scaling will take care of streaching the image to �t a square.

Scaling to 20 x 20 pixels

The classi�er provided was trained with 20 x 20 pixels images so we need to scale our photos to meet. It may cause distortion depending on the
height and width ratio of the cropped original photo. There are many ways to scale a photo but we are going to use the simplest one. We lay a
scaled grid of 20 x 20 over the original photo and take a sample pixel on the center of each grid. To lay a scaled grid, we compute two vectors of 20
indexes each evenly spaced on the original size of the image. One for the height and one for the width of the image. For example, in an image of
320 x 200 pixels will produce to vectors like

Copy the value of each pixel located by the grid of these indexes to a new matrix. Ending up with a matrix of 20 x 20 real numbers.

Black & White to Gray & White

The classi�er provided was trained with images of white digits over gray background. Speci�cally, the 20 x 20 matrix of real numbers ONLY range
from 0.0 to 1.0 instead of the complete black & white range of -1.0 to 1.0, this means that we have to normalize our photos to a range 0.0 to 1.0 for
this classi�er to work. But also, we invert the black and white colors because is easier to "draw" black over white on our photos and we need to get
white digits. So in short, we invert black and white and stretch black to gray.

Rotation of image

Some times our photos are automatically rotated like in our celular phones. The classi�er provided can not recognize rotated images so we may
need to rotate it back sometimes. This can be done with an Octave function rot90() like this.

Where rotationStep is an integer: -1 mean rotate 90 degrees CCW and 1 mean rotate 90 degrees CW.

Approach

1. The approach is to have a function that converts our photo to the format the classifier is expecting. As if it was just a sample from the training data set.

2. Use the classifier to predict the digit in the converted image.

Code step by step

De�ne the function name, the output variable and three parameters, one for the �lename of our photo, one optional cropping percentage (if not
provided will default to zero, meaning no cropping) and the last optional rotation of the image (if not provided will default to cero, meaning no
rotation).

Read the �le as a RGB image and convert it to Black & White 2D matrix (see the introduction).

Establish the �nal size of the cropped image.

Image2DmatrixBW = Image3DmatrixYIQ(:,:,1);

croppedImage = Image2DmatrixBW(origen1:size1, origin2:size2);

[9    25    41    57    73 ... 313] % 20 indexes

[6    16    26    36    46 ... 196] % 20 indexes

ImageAligned = rot90(Image, rotationStep);

function vectorImage = imageTo20x20Gray(fileName, cropPercentage=0, rotStep=0)

% Read as RGB image
Image3DmatrixRGB = imread(fileName);
% Convert to NTSC image (YIQ)
Image3DmatrixYIQ = rgb2ntsc(Image3DmatrixRGB );
% Convert to grays keeping only luminance (Y)
%        ...and discard chrominance (IQ)
Image2DmatrixBW  = Image3DmatrixYIQ(:,:,1);
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Obtain the origin and amount of the columns and rows to be copied to the cropped image.

Compute the scale and compute back the new size. This last step is extra. It is computed back so the code keeps general for future modi�cation of
the classi�er size. For example: if changed from 20 x 20 pixels to 30 x 30. Then the we only need to change the line of code where the scale is
computed.

Compute two sets of 20 indexes evenly spaced. One over the original height and one over the original width of the image.

Copy just the indexed values from old image to get new image of 20 x 20 real numbers. This is called "sampling" because it copies just a sample
pixel indexed by a grid. All the sample pixels make the new image.

Rotate the matrix using the rot90() function with the rotStep parameter: -1 is CCW, 0 is no rotate, 1 is CW.

Invert black and white because it is easier to draw black digits over white background in our photos but the classi�er needs white digits.

Find the min and max gray values in the image and compute the total value range in preparation for normalization.

Do normalization so all values end up between 0.0 and 1.0 because this particular classi�er do not perform well with negative numbers.

Add some contrast to the image. The multiplication factor is the contrast control, you can increase it if desired to obtain sharper contrast (contrast
only between gray and white, black was already removed in normalization).

Show the image specifying the black & white range [-1 1] to avoid automatic ranging using the image range values of gray to white. Showing the
photo with di�erent range, does not a�ect the values in the output matrix, so do not a�ect the classi�er. It is only as a visual feedback for the user.

Finally, output the matrix as a unrolled vector to be compatible with the classi�er.

% Get the size of your image
oldSize = size(Image2DmatrixBW);
% Obtain crop size toward centered square (cropDelta)
% ...will be zero for the already minimum dimension
% ...and if the cropPercentage is zero, 
% ...both dimensions are zero
% ...meaning that the original image will go intact to croppedImage
cropDelta = floor((oldSize - min(oldSize)) .* (cropPercentage/100));
% Compute the desired final pixel size for the original image
finalSize = oldSize - cropDelta;

% Compute each dimension origin for croping
cropOrigin = floor(cropDelta / 2) + 1;
% Compute each dimension copying size
copySize = cropOrigin + finalSize - 1;
% Copy just the desired cropped image from the original B&W image
croppedImage = Image2DmatrixBW( ...
                    cropOrigin(1):copySize(1), cropOrigin(2):copySize(2));

% Resolution scale factors: [rows cols]
scale = [20 20] ./ finalSize;
% Compute back the new image size (extra step to keep code general)
newSize = max(floor(scale .* finalSize),1); 

% Compute a re-sampled set of indices:
rowIndex = min(round(((1:newSize(1))-0.5)./scale(1)+0.5), finalSize(1));
colIndex = min(round(((1:newSize(2))-0.5)./scale(2)+0.5), finalSize(2));

% Copy just the indexed values from old image to get new image
newImage = croppedImage(rowIndex,colIndex,:);

% Rotate if needed: -1 is CCW, 0 is no rotate, 1 is CW
newAlignedImage = rot90(newImage, rotStep);

% Invert black and white
invertedImage = - newAlignedImage;

% Find min and max grays values in the image
maxValue = max(invertedImage(:));
minValue = min(invertedImage(:));
% Compute the value range of actual grays
delta = maxValue - minValue;

% Normalize grays between 0 and 1
normImage = (invertedImage - minValue) / delta;

% Add contrast. Multiplication factor is contrast control.
contrastedImage = sigmoid((normImage -0.5) * 5);

% Show image as seen by the classifier
imshow(contrastedImage, [-1, 1] );

% Output the matrix as a unrolled vector
vectorImage = reshape(normImage, 1, newSize(1) * newSize(2));
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End function.

Usage samples

Single photo

Photo file in myDigit.jpg

Cropping 60% of the way to square photo

No rotationvectorImage = imageTo20x20Gray('myDigit.jpg',60); predict(Theta1, Theta2, vectorImage)

Photo file in myDigit.jpg

No cropping

CCW rotationvectorImage = imageTo20x20Gray('myDigit.jpg',:,-1); predict(Theta1, Theta2, vectorImage)

Multiple photos

Photo files in myFirstDigit.jpg, mySecondDigit.jpg

First crop to square and second 25% of the way to square photo

First no rotation and second CW rotationvectorImage(1,:) = imageTo20x20Gray('myFirstDigit.jpg',100); vectorImage(2,:) =
imageTo20x20Gray('mySecondDigit.jpg',25,1); predict(Theta1, Theta2, vectorImage)

Tips

JPG photos of black numbers over white background

Preferred square photos but not required

Rotate as needed because the classifier can only work with vertical digits

Leave background space around digit. Al least 2 pixels when seen at 20 x 20 resolution. This means that the classifier only really works in a 16 x 16
area.

Play changing the contrast multipier to 10 (or more).

Complete code (just copy and paste)

end;1



Photo Gallery

Digit 2

function vectorImage = imageTo20x20Gray(fileName, cropPercentage=0, rotStep=0)
%IMAGETO20X20GRAY display reduced image and converts for digit classification
%
% Sample usage: 
%       imageTo20x20Gray('myDigit.jpg', 100, -1);
%
%       First parameter: Image file name
%             Could be bigger than 20 x 20 px, it will
%             be resized to 20 x 20. Better if used with
%             square images but not required.
% 
%       Second parameter: cropPercentage (any number between 0 and 100)
%             0  0% will be cropped (optional, no needed for square images)
%            50  50% of available croping will be cropped
%           100  crop all the way to square image (for rectangular images)
% 
%       Third parameter: rotStep
%            -1  rotate image 90 degrees CCW
%             0  do not rotate (optional)
%             1  rotate image 90 degrees CW
%
% (Thanks to Edwin Frühwirth for parts of this code)
% Read as RGB image
Image3DmatrixRGB = imread(fileName);
% Convert to NTSC image (YIQ)
Image3DmatrixYIQ = rgb2ntsc(Image3DmatrixRGB );
% Convert to grays keeping only luminance (Y) and discard chrominance (IQ)
Image2DmatrixBW  = Image3DmatrixYIQ(:,:,1);
% Get the size of your image
oldSize = size(Image2DmatrixBW);
% Obtain crop size toward centered square (cropDelta)
% ...will be zero for the already minimum dimension
% ...and if the cropPercentage is zero, 
% ...both dimensions are zero
% ...meaning that the original image will go intact to croppedImage
cropDelta = floor((oldSize - min(oldSize)) .* (cropPercentage/100));
% Compute the desired final pixel size for the original image
finalSize = oldSize - cropDelta;
% Compute each dimension origin for croping
cropOrigin = floor(cropDelta / 2) + 1;
% Compute each dimension copying size
copySize = cropOrigin + finalSize - 1;
% Copy just the desired cropped image from the original B&W image
croppedImage = Image2DmatrixBW( ...
                    cropOrigin(1):copySize(1), cropOrigin(2):copySize(2));
% Resolution scale factors: [rows cols]
scale = [20 20] ./ finalSize;
% Compute back the new image size (extra step to keep code general)
newSize = max(floor(scale .* finalSize),1); 
% Compute a re-sampled set of indices:
rowIndex = min(round(((1:newSize(1))-0.5)./scale(1)+0.5), finalSize(1));
colIndex = min(round(((1:newSize(2))-0.5)./scale(2)+0.5), finalSize(2));
% Copy just the indexed values from old image to get new image
newImage = croppedImage(rowIndex,colIndex,:);
% Rotate if needed: -1 is CCW, 0 is no rotate, 1 is CW
newAlignedImage = rot90(newImage, rotStep);
% Invert black and white
invertedImage = - newAlignedImage;
% Find min and max grays values in the image
maxValue = max(invertedImage(:));
minValue = min(invertedImage(:));
% Compute the value range of actual grays
delta = maxValue - minValue;
% Normalize grays between 0 and 1
normImage = (invertedImage - minValue) / delta;
% Add contrast. Multiplication factor is contrast control.
contrastedImage = sigmoid((normImage -0.5) * 5);
% Show image as seen by the classifier
imshow(contrastedImage, [-1, 1] );
% Output the matrix as a unrolled vector
vectorImage = reshape(contrastedImage, 1, newSize(1)*newSize(2));
end
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Digit 6



Digit 6 inverted is digit 9. This is the same photo of a six but rotated. Also, changed the contrast multiplier from 5 to 20. You can

note that the gray background is smoother.



Digit 3



Explanation of Derivatives Used in Backpropagation
We know that for a logistic regression classifier (which is what all of the output neurons in a neural network are), we use the cost function, 

, and apply this over the K output neurons, and for all m examples.

The equation to compute the partial derivatives of the theta terms in the output neurons:

And the equation to compute partial derivatives of the theta terms in the [last] hidden layer neurons (layer L-1):

Clearly they share some pieces in common, so a delta term ( ) can be used for the common pieces between the output layer and the hidden layer
immediately before it (with the possibility that there could be many hidden layers if we wanted):

And we can go ahead and use another delta term ( ) for the pieces that would be shared by the final hidden layer and a hidden layer before that, if
we had one. Regardless, this delta term will still serve to make the math and implementation more concise.

With these delta terms, our equations become:

Now, time to evaluate these derivatives:

Let's start with the output layer:
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Using , we need to evaluate both partial derivatives.

Given , where , the partial derivative is:

And given a=g(z), where , the partial derivative is:

So, let's substitute these in for :

So, for a 3-layer network (L=3),

Note that this is the correct equation, as given in our notes.

Now, given z=θ∗input, and in layer L the input is , the partial derivative is:

Put it together for the output layer:

Let's continue on for the hidden layer (let's assume we only have 1 hidden layer):

Let's figure out .

Once again, given z=θ∗input, the partial derivative is:

And: 

So, let's substitute these in for :

So, for a 3-layer network,

Put it together for the [last] hidden layer:

NN for linear systems

Introduction
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Week 6 Lecture Notes

ML:Advice for Applying Machine Learning

Deciding What to Try Next
Errors in your predictions can be troubleshooted by:

Getting more training examples

Trying smaller sets of features

Trying additional features

Trying polynomial features

Increasing or decreasing λ

Don't just pick one of these avenues at random. We'll explore diagnostic techniques for choosing one of the above solutions in
the following sections.

Evaluating a Hypothesis
A hypothesis may have low error for the training examples but still be inaccurate (because of over�tting).

With a given dataset of training examples, we can split up the data into two sets: a training set and a test set.

The new procedure using these two sets is then:

1. Learn  and minimize  using the training set

2. Compute the test set error 

The test set error

1. For linear regression: 

2. For classification ~ Misclassification error (aka 0/1 misclassification error):

This gives us a binary 0 or 1 error result based on a misclassi�cation.

The average test error for the test set is

This gives us the proportion of the test data that was misclassi�ed.

Model Selection and Train/Validation/Test Sets
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Model Selection and Train/Validation/Test Sets
Just because a learning algorithm fits a training set well, that does not mean it is a good hypothesis.

The error of your hypothesis as measured on the data set with which you trained the parameters will be lower than any other data
set.

In order to choose the model of your hypothesis, you can test each degree of polynomial and look at the error result.

Without the Validation Set (note: this is a bad method - do not use it)

1. Optimize the parameters in Θ using the training set for each polynomial degree.

2. Find the polynomial degree d with the least error using the test set.

3. Estimate the generalization error also using the test set with , (d = theta from polynomial with lower error);

In this case, we have trained one variable, d, or the degree of the polynomial, using the test set. This will cause our error value
to be greater for any other set of data.

Use of the CV set

To solve this, we can introduce a third set, the Cross Validation Set, to serve as an intermediate set that we can train d with.
Then our test set will give us an accurate, non-optimistic error.

One example way to break down our dataset into the three sets is:

Training set: 60%

Cross validation set: 20%

Test set: 20%

We can now calculate three separate error values for the three di�erent sets.

With the Validation Set (note: this method presumes we do not also use the CV set for regularization)

1. Optimize the parameters in Θ using the training set for each polynomial degree.

2. Find the polynomial degree d with the least error using the cross validation set.

3. Estimate the generalization error using the test set with , (d = theta from polynomial with lower error);

This way, the degree of the polynomial d has not been trained using the test set.

(Mentor note: be aware that using the CV set to select 'd' means that we cannot also use it for the validation curve process of
setting the lambda value).

Diagnosing Bias vs. Variance
In this section we examine the relationship between the degree of the polynomial d and the under�tting or over�tting of our
hypothesis.

We need to distinguish whether bias or variance is the problem contributing to bad predictions.

High bias is underfitting and high variance is overfitting. We need to find a golden mean between these two.

The training error will tend to decrease as we increase the degree d of the polynomial.

At the same time, the cross validation error will tend to decrease as we increase d up to a point, and then it will increase as d
is increased, forming a convex curve.

High bias (under�tting): both  and  will be high. Also, .

( )Jtest Θ(d)

( )Jtest Θ(d)

(Θ)Jtrain (Θ)JCV (Θ) ≈ (Θ)JCV Jtrain

(Θ) (Θ) (Θ)



High variance (over�tting):  will be low and  will be much greater than .

The is represented in the �gure below:

Regularization and Bias/Variance
Instead of looking at the degree d contributing to bias/variance, now we will look at the regularization parameter λ.

Large λ: High bias (underfitting)

Intermediate λ: just right

Small λ: High variance (overfitting)

A large lambda heavily penalizes all the Θ parameters, which greatly simpli�es the line of our resulting function, so causes
under�tting.

The relationship of λ to the training set and the variance set is as follows:

Low λ:  is low and  is high (high variance/over�tting).

Intermediate λ:  and  are somewhat low and .

Large λ: both  and  will be high (under�tting /high bias)

The �gure below illustrates the relationship between lambda and the hypothesis:

In order to choose the model and the regularization λ, we need:

1. Create a list of lambdas (i.e. λ∈{0,0.01,0.02,0.04,0.08,0.16,0.32,0.64,1.28,2.56,5.12,10.24});

(Θ)Jtrain (Θ)JCV (Θ)Jtrain

(Θ)Jtrain (Θ)JCV

(Θ)Jtrain (Θ)JCV (Θ) ≈ (Θ)Jtrain JCV

(Θ)Jtrain (Θ)JCV



2. Create a set of models with di�erent degrees or any other variants.

3. Iterate through the s and for each  go through all the models to learn some .

4. Compute the cross validation error using the learned Θ (computed with λ) on the  without regularization or λ = 0.

5. Select the best combo that produces the lowest error on the cross validation set.

6. Using the best combo Θ and λ, apply it on  to see if it has a good generalization of the problem.

Learning Curves
Training 3 examples will easily have 0 errors because we can always �nd a quadratic curve that exactly touches 3 points.

As the training set gets larger, the error for a quadratic function increases.

The error value will plateau out after a certain m, or training set size.

With high bias

Low training set size: causes  to be low and  to be high.

Large training set size: causes both  and  to be high with ≈ .

If a learning algorithm is su�ering from high bias, getting more training data will not (by itself) help much.

For high variance, we have the following relationships in terms of the training set size:

With high variance

Low training set size:  will be low and  will be high.

Large training set size:  increases with training set size and  continues to decrease without leveling o�.
Also, <  but the di�erence between them remains signi�cant.

If a learning algorithm is su�ering from high variance, getting more training data is likely to help.

Deciding What to Do Next Revisited

λ λ Θ

(Θ)JCV

(Θ)Jtest

(Θ)Jtrain (Θ)JCV

(Θ)Jtrain (Θ)JCV (Θ)Jtrain (Θ)JCV

(Θ)Jtrain (Θ)JCV

(Θ)Jtrain (Θ)JCV
(Θ)Jtrain (Θ)JCV



Deciding What to Do Next Revisited
Our decision process can be broken down as follows:

Getting more training examples

Fixes high variance

Trying smaller sets of features

Fixes high variance

Adding features

Fixes high bias

Adding polynomial features

Fixes high bias

Decreasing λ

Fixes high bias

Increasing λ

Fixes high variance

Diagnosing Neural Networks

A neural network with fewer parameters is prone to underfitting. It is also computationally cheaper.

A large neural network with more parameters is prone to overfitting. It is also computationally expensive. In this case you can
use regularization (increase λ) to address the overfitting.

Using a single hidden layer is a good starting default. You can train your neural network on a number of hidden layers using
your cross validation set.

Model Selection:

Choosing M the order of polynomials.

How can we tell which parameters Θ to leave in the model (known as "model selection")?

There are several ways to solve this problem:

Get more data (very difficult).

Choose the model which best fits the data without overfitting (very difficult).

Reduce the opportunity for overfitting through regularization.

Bias: approximation error (Di�erence between expected value and optimal value)

High Bias = UnderFitting (BU)

 and  both will be high and  ≈ 

Variance: estimation error due to �nite data

High Variance = OverFitting (VO)

 is low and  ≫

(Θ)Jtrain (Θ)JCV (Θ)Jtrain (Θ)JCV

(Θ)Jtrain (Θ)JCV (Θ)Jtrain



Intuition for the bias-variance trade-o�:

Complex model => sensitive to data => much affected by changes in X => high variance, low bias.

Simple model => more rigid => does not change as much with changes in X => low variance, high bias.

One of the most important goals in learning: �nding a model that is just right in the bias-variance trade-o�.

Regularization E�ects:

Small values of λ allow model to become finely tuned to noise leading to large variance => overfitting.

Large values of λ pull weight parameters to zero leading to large bias => underfitting.

Model Complexity E�ects:

Lower-order polynomials (low model complexity) have high bias and low variance. In this case, the model fits poorly consistently.

Higher-order polynomials (high model complexity) fit the training data extremely well and the test data extremely poorly. These
have low bias on the training data, but very high variance.

In reality, we would want to choose a model somewhere in between, that can generalize well but also fits the data reasonably well.

A typical rule of thumb when running diagnostics is:

More training examples fixes high variance but not high bias.

Fewer features fixes high variance but not high bias.

Additional features fixes high bias but not high variance.

The addition of polynomial and interaction features fixes high bias but not high variance.

When using gradient descent, decreasing lambda can fix high bias and increasing lambda can fix high variance (lambda is the
regularization parameter).

When using neural networks, small neural networks are more prone to under-fitting and big neural networks are prone to over-
fitting. Cross-validation of network size is a way to choose alternatives.

ML:Machine Learning System Design

Prioritizing What to Work On
Di�erent ways we can approach a machine learning problem:

Collect lots of data (for example "honeypot" project but doesn't always work)

Develop sophisticated features (for example: using email header data in spam emails)

Develop algorithms to process your input in different ways (recognizing misspellings in spam).

It is di�cult to tell which of the options will be helpful.

Error Analysis
The recommended approach to solving machine learning problems is:

Start with a simple algorithm, implement it quickly, and test it early.

Plot learning curves to decide if more data, more features, etc. will help

Error analysis: manually examine the errors on examples in the cross validation set and try to spot a trend.

It's important to get error results as a single, numerical value. Otherwise it is di�cult to assess your algorithm's performance.



You may need to process your input before it is useful. For example, if your input is a set of words, you may want to treat the
same word with di�erent forms (fail/failing/failed) as one word, so must use "stemming software" to recognize them all as
one.

Error Metrics for Skewed Classes
It is sometimes di�cult to tell whether a reduction in error is actually an improvement of the algorithm.

For example: In predicting a cancer diagnoses where 0.5% of the examples have cancer, we find our learning algorithm has a 1%
error. However, if we were to simply classify every single example as a 0, then our error would reduce to 0.5% even though we did
not improve the algorithm.

This usually happens with skewed classes; that is, when our class is very rare in the entire data set.

Or to say it another way, when we have lot more examples from one class than from the other class.

For this we can use Precision/Recall.

Predicted: 1, Actual: 1 --- True positive

Predicted: 0, Actual: 0 --- True negative

Predicted: 0, Actual, 1 --- False negative

Predicted: 1, Actual: 0 --- False positive

Precision: of all patients we predicted where y=1, what fraction actually has cancer?

Recall: Of all the patients that actually have cancer, what fraction did we correctly detect as having cancer?

These two metrics give us a better sense of how our classi�er is doing. We want both precision and recall to be high.

In the example at the beginning of the section, if we classify all patients as 0, then our recall will be , so despite

having a lower error percentage, we can quickly see it has worse recall.

Accuracy = 

Note 1: if an algorithm predicts only negatives like it does in one of exercises, the precision is not de�ned, it is impossible to
divide by 0. F1 score will not be de�ned too.

Trading O� Precision and Recall
We might want a con�dent prediction of two classes using logistic regression. One way is to increase our threshold:

Predict 1 if: 

Predict 0 if: 

This way, we only predict cancer if the patient has a 70% chance.

Doing this, we will have higher precision but lower recall (refer to the de�nitions in the previous section).

=
True Positives

Total number of predicted positives

True Positives

True Positives + False positives

=
True Positives

Total number of actual positives

True Positives

True Positives + False negatives

= 0
0

0 + f

truepositive+truenegative

totalpopulation

(x) ≥ 0.7hθ

(x) < 0.7hθ



In the opposite example, we can lower our threshold:

Predict 1 if: 

Predict 0 if: 

That way, we get a very safe prediction. This will cause higher recall but lower precision.

The greater the threshold, the greater the precision and the lower the recall.

The lower the threshold, the greater the recall and the lower the precision.

In order to turn these two metrics into one single number, we can take the F value.

One way is to take the average:

This does not work well. If we predict all y=0 then that will bring the average up despite having 0 recall. If we predict all
examples as y=1, then the very high recall will bring up the average despite having 0 precision.

A better way is to compute the F Score (or F1 score):

In order for the F Score to be large, both precision and recall must be large.

We want to train precision and recall on the cross validation set so as not to bias our test set.

Data for Machine Learning
How much data should we train on?

In certain cases, an "inferior algorithm," if given enough data, can outperform a superior algorithm with less data.

We must choose our features to have enough information. A useful test is: Given input x, would a human expert be able to
con�dently predict y?

Rationale for large data: if we have a low bias algorithm (many features or hidden units making a very complex function),
then the larger the training set we use, the less we will have over�tting (and the more accurate the algorithm will be on the
test set).

Quiz instructions
When the quiz instructions tell you to enter a value to "two decimal digits", what it really means is "two signi�cant digits". So,
just for example, the value 0.0123 should be entered as "0.012", not "0.01".

References:

https://class.coursera.org/ml/lecture/index

http://www.cedar.buffalo.edu/~srihari/CSE555/Chap9.Part2.pdf

http://blog.stephenpurpura.com/post/13052575854/managing-bias-variance-tradeoff-in-machine-learning

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap3/Bias-Variance.pdf

(x) ≥ 0.3hθ

(x) < 0.3hθ

P +R

2

F Score = 2
PR

P +R







Week 7 Lecture Notes

Optimization Objective
The Support Vector Machine (SVM) is yet another type of supervised machine learning algorithm. It is sometimes cleaner and more
powerful.

Recall that in logistic regression, we use the following rules:

if y=1, then  and 

if y=0, then  and 

Recall the cost function for (unregularized) logistic regression:

To make a support vector machine, we will modify the �rst term of the cost function  so that when 

 (from now on, we shall refer to this as z) is greater than 1, it outputs 0. Furthermore, for values of z less than 1, we shall use a straight
decreasing line instead of the sigmoid curve.(In the literature, this is called a hinge loss (https://en.wikipedia.org/wiki/Hinge_loss) function.)

Similarly, we modify the second term of the cost function  so that when z is less than -1, it

outputs 0. We also modify it so that for values of z greater than -1, we use a straight increasing line instead of the sigmoid curve.

(x) ≈ 1hθ x ≫ 0ΘT

(x) ≈ 0hθ x ≪ 0ΘT

J(θ) = − log( ( )) − (1 − ) log(1 − ( ))
1
m
∑
i=1

m

y (i) hθ x(i) y (i) hθ x(i)

= − log( )− (1 − )log(1 − )1
m
∑
i=1

m

y (i) 1

1 + e−θT x(i)
y (i) 1

1 + e−θT x(i)

−log( (x)) = −log( )hθ

1

1 + e− xθT

xθT

−log(1 − ) = −log(1 − )hθ(x)
1

1 + e− xθT



We shall denote these as  and  (respectively, note that  is the cost for classifying when y=1, and  is the
cost for classifying when y=0), and we may de�ne them as follows (where k is an arbitrary constant de�ning the magnitude of the slope of
the line):

Recall the full cost function from (regularized) logistic regression:

Note that the negative sign has been distributed into the sum in the above equation.

We may transform this into the cost function for support vector machines by substituting  and :

We can optimize this a bit by multiplying this by m (thus removing the m factor in the denominators). Note that this does not a�ect our

optimization, since we're simply multiplying our cost function by a positive constant (for example, minimizing  gives us 5;

multiplying it by 10 to make it  still gives us 5 when minimized).

Furthermore, convention dictates that we regularize using a factor C, instead of λ, like so:

This is equivalent to multiplying the equation by , and thus results in the same values when optimized. Now, when we wish to

regularize more (that is, reduce over�tting), we decrease C, and when we wish to regularize less (that is, reduce under�tting), we increase C.

Finally, note that the hypothesis of the Support Vector Machine is not interpreted as the probability of y being 1 or 0 (as it is for the
hypothesis of logistic regression). Instead, it outputs either 1 or 0. (In technical terms, it is a discriminant function.)

Large Margin Intuition
A useful way to think about Support Vector Machines is to think of them as Large Margin Classi�ers.

If y=1, we want  (not just ≥0)

(z)cost1 (z)cost0 (z)cost1 (z)cost0

z = xθT

(z) = max(0,k(1 + z))cost0

(z) = max(0,k(1 − z))cost1

J(θ) = (−log( ( ))) + (1 − )(−log(1 − ( ))) +1
m
∑m

i=1 y (i) hθ x(i) y (i) hθ x(i) λ

2m
∑n

j=1 Θ2
j

(z)cost0 (z)cost1

J(θ) =   ( ) + (1 − )  ( ) +1
m
∑m

i=1 y (i) cost1 θT x(i) y (i) cost0 θT x(i) λ

2m
∑n

j=1 Θ2
j

(u − 5 + 1)2

10(u − 5 + 10)2

J(θ) =   ( ) + (1 − )  ( ) +∑m
i=1 y (i) cost1 θT x(i) y (i) cost0 θT x(i) λ

2
∑n

j=1 Θ2
j

J(θ) = C   ( ) + (1 − )  ( ) +∑m
i=1 y (i) cost1 θT x(i) y (i) cost0 θT x(i) 1

2
∑n

j=1 Θ2
j

C =
1
λ

(x) = {hθ
1
0

if  x ≥ 0ΘT

otherwise

x ≥ 1ΘT

≤ −1T



If y=0, we want  (not just <0)

Now when we set our constant C to a very large value (e.g. 100,000), our optimizing function will constrain Θ such that the equation A (the
summation of the cost of each example) equals 0. We impose the following constraints on Θ:

 if y=1 and  if y=0.

If C is very large, we must choose Θ parameters such that:

This reduces our cost function to:

Recall the decision boundary from logistic regression (the line separating the positive and negative examples). In SVMs, the decision
boundary has the special property that it is as far away as possible from both the positive and the negative examples.

The distance of the decision boundary to the nearest example is called the margin. Since SVMs maximize this margin, it is often called a
Large Margin Classi�er.

The SVM will separate the negative and positive examples by a large margin.

This large margin is only achieved when C is very large.

Data is linearly separable when a straight line can separate the positive and negative examples.

If we have outlier examples that we don't want to a�ect the decision boundary, then we can reduce C.

Increasing and decreasing C is similar to respectively decreasing and increasing λ, and can simplify our decision boundary.

Mathematics Behind Large Margin Classi�cation (Optional)

Vector Inner Product

Say we have two vectors, u and v:

The length of vector v is denoted , and it describes the line on a graph from origin (0,0) to .

The length of vector v can be calculated with by the Pythagorean theorem.

The projection of vector v onto vector u is found by taking a right angle from u to the end of v, creating a right triangle.

p= length of projection of v onto the vector u.

Note that  where θ is the angle between u and v. Also, . If you substitute p for , you get 

.

So the product  is equal to the length of the projection times the length of vector u.

In our example, since u and v are vectors of the same length, .

If the angle between the lines for v and u is greater than 90 degrees, then the projection p will be negative.

x ≤ −1ΘT

x ≥ 1ΘT x ≤ −1ΘT

( x) + (1 − ) ( x) = 0∑m
i=1 y(i)cost1 ΘT y(i) cost0 ΘT

J(θ) = C ⋅ 0 +
1
2
∑
j=1

n

Θ2
j

=
1
2
∑
j=1

n

Θ2
j

u = [ ]u1

u2
v = [ ]v1

v2

||v|| ( , )v1 v2

+v2
1 v2

2

− −−−−−
√

v = p ⋅ ||u||uT

v = ||u|| ⋅ ||v|| cosθuT p = ||v|| cosθ ||v|| cosθ

v = p ⋅ ||u||uT

vuT

v = uuT vT

v = u = p ⋅ ||u|| = +uT vT u1v1 u2v2



We can use the same rules to rewrite :

So we now have a new optimization objective by substituting  in for :

If y=1, we want 

If y=0, we want 

The reason this causes a "large margin" is because: the vector for Θ is perpendicular to the decision boundary. In order for our optimization

objective (above) to hold true, we need the absolute value of our projections  to be as large as possible.

If , then all our decision boundaries will intersect (0,0). If , the support vector machine will still �nd a large margin for the
decision boundary.

Kernels I
Kernels allow us to make complex, non-linear classi�ers using Support Vector Machines.

Given x, compute new feature depending on proximity to landmarks .

To do this, we �nd the "similarity" of x and some landmark :

This "similarity" function is called a Gaussian Kernel. It is a speci�c example of a kernel.

The similarity function can also be written as follows:

There are a couple properties of the similarity function:

If , then 

If x is far from , then 

In other words, if x and the landmark are close, then the similarity will be close to 1, and if x and the landmark are far away from each
other, the similarity will be close to 0.

Each landmark gives us the features in our hypothesis:

min
Θ

1
2
∑
j=1

n

Θ2
j

= ( + + ⋯ + )
1
2

Θ2
1 Θ2

2 Θ2
n

= (
1
2

+ + ⋯ +Θ2
1 Θ2

2 Θ2
n

− −−−−−−−−−−−−−−−√ )2

= ||Θ|
1
2

|2

ΘT x(i)

= ⋅ ||Θ|| = + + ⋯ +ΘT x(i) p(i) Θ1x
(i)
1 Θ2x

(i)
2 Θn x

(i)
n

⋅ ||Θ||p(i) ΘT x(i)

⋅ ||Θ|| ≥ 1p(i)

⋅ ||Θ|| ≤ −1p(i)

p(i)

= 0Θ0 ≠ 0Θ0

,   ,  l(1) l(2) l(3)

l(i)

= similarity(x, ) = exp(− )fi l(i) ||x − |l(i) |2

2σ2
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( −∑n

j=1 xj l
(i)
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→l
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…
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 is a parameter of the Gaussian Kernel, and it can be modi�ed to increase or decrease the drop-o� of our feature . Combined with
looking at the values inside Θ, we can choose these landmarks to get the general shape of the decision boundary.

Kernels II
One way to get the landmarks is to put them in the exact same locations as all the training examples. This gives us m landmarks, with one
landmark per training example.

Given example x:

, , , and so on.

This gives us a "feature vector,"  of all our features for example . We may also set  to correspond with . Thus given

training example :

Now to get the parameters Θ we can use the SVM minimization algorithm but with  substituted in for :

Using kernels to generate f(i) is not exclusive to SVMs and may also be applied to logistic regression. However, because of computational
optimizations on SVMs, kernels combined with SVMs is much faster than with other algorithms, so kernels are almost always found
combined only with SVMs.

Choosing SVM Parameters

Choosing C (recall that 

If C is large, then we get higher variance/lower bias

If C is small, then we get lower variance/higher bias

The other parameter we must choose is  from the Gaussian Kernel function:

With a large , the features � vary more smoothly, causing higher bias and lower variance.

With a small , the features � vary less smoothly, causing lower bias and higher variance.

Using An SVM

There are lots of good SVM libraries already written. A. Ng often uses 'liblinear' and 'libsvm'. In practical application, you should use one of
these libraries rather than rewrite the functions.

In practical application, the choices you do need to make are:

Choice of parameter C

Choice of kernel (similarity function)

No kernel ("linear" kernel) -- gives standard linear classifier

Choose when n is large and when m is small

Gaussian Kernel (above) -- need to choose 

Choose when n is small and m is large

The library may ask you to provide the kernel function.

Note: do perform feature scaling before using the Gaussian Kernel.

σ2 fi

= similarity(x, )f1 l(1) = similarity(x, )f2 l(2) = similarity(x, )f3 l(3)

f(i) x(i) = 1f0 Θ0
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⎡

⎣

⎢⎢⎢⎢⎢⎢
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(i)
1 x(i) l(1)
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(i)
2 x(i) l(2)

⋮
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m x(i) l(m)

⎤

⎦

⎥⎥⎥⎥⎥⎥

f (i) x(i)

C ( ) + (1 − ) ( ) +minΘ ∑m
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Note: not all similarity functions are valid kernels. They must satisfy "Mercer's Theorem" which guarantees that the SVM package's
optimizations run correctly and do not diverge.

You want to train C and the parameters for the kernel function using the training and cross-validation datasets.

Multi-class Classi�cation

Many SVM libraries have multi-class classi�cation built-in.

You can use the one-vs-all method just like we did for logistic regression, where  with . We pick

class i with the largest .

Logistic Regression vs. SVMs

If n is large (relative to m), then use logistic regression, or SVM without a kernel (the "linear kernel")

If n is small and m is intermediate, then use SVM with a Gaussian Kernel

If n is small and m is large, then manually create/add more features, then use logistic regression or SVM without a kernel.

In the �rst case, we don't have enough examples to need a complicated polynomial hypothesis. In the second example, we have enough
examples that we may need a complex non-linear hypothesis. In the last case, we want to increase our features so that logistic regression
becomes applicable.

Note: a neural network is likely to work well for any of these situations, but may be slower to train.

Additional references
"An Idiot's Guide to Support Vector Machines": http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

y ∈ 1,2,3,…,K , ,…,Θ(K)Θ(1) Θ(2)

( xΘ(i))T



Week 8 Lecture Notes

ML:Clustering

Unsupervised Learning: Introduction
Unsupervised learning is contrasted from supervised learning because it uses an unlabeled training set rather than a labeled one.

In other words, we don't have the vector y of expected results, we only have a dataset of features where we can �nd structure.

Clustering is good for:

Market segmentation

Social network analysis

Organizing computer clusters

Astronomical data analysis

K-Means Algorithm
The K-Means Algorithm is the most popular and widely used algorithm for automatically grouping data into coherent subsets.

1. Randomly initialize two points in the dataset called the cluster centroids.

2. Cluster assignment: assign all examples into one of two groups based on which cluster centroid the example is closest to.

3. Move centroid: compute the averages for all the points inside each of the two cluster centroid groups, then move the cluster centroid points to those
averages.

4. Re-run (2) and (3) until we have found our clusters.

Our main variables are:

K (number of clusters)

Training set 

Where 

Note that we will not use the x0=1 convention.

The algorithm:

The �rst for-loop is the 'Cluster Assignment' step. We make a vector c where c(i) represents the centroid assigned to example x(i).

We can write the operation of the Cluster Assignment step more mathematically as follows:

That is, each  contains the index of the centroid that has minimal distance to .

By convention, we square the right-hand-side, which makes the function we are trying to minimize more sharply increasing. It is mostly just a
convention. But a convention that helps reduce the computation load because the Euclidean distance requires a square root but it is canceled.

Without the square:

With the square:

...so the square convention serves two purposes, minimize more sharply and less computation.
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Randomly initialize K cluster centroids mu(1), mu(2), ..., mu(K)
Repeat:
   for i = 1 to m:
      c(i):= index (from 1 to K) of cluster centroid closest to x(i)
   for k = 1 to K:
      mu(k):= average (mean) of points assigned to cluster k

1
2
3
4
5
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The second for-loop is the 'Move Centroid' step where we move each centroid to the average of its group.

More formally, the equation for this loop is as follows:

Where each of  are the training examples assigned to group .

If you have a cluster centroid with 0 points assigned to it, you can randomly re-initialize that centroid to a new point. You can also simply
eliminate that cluster group.

After a number of iterations the algorithm will converge, where new iterations do not a�ect the clusters.

Note on non-separated clusters: some datasets have no real inner separation or natural structure. K-means can still evenly segment your data into
K subsets, so can still be useful in this case.

Optimization Objective
Recall some of the parameters we used in our algorithm:

 = index of cluster (1,2,...,K) to which example x(i) is currently assigned

= cluster centroid k (μk∈ℝn)

 = cluster centroid of cluster to which example x(i) has been assigned

Using these variables we can de�ne our cost function:

Our optimization objective is to minimize all our parameters using the above cost function:

That is, we are �nding all the values in sets c, representing all our clusters, and μ, representing all our centroids, that will minimize the average of
the distances of every training example to its corresponding cluster centroid.

The above cost function is often called the distortion of the training examples.

In the cluster assignment step, our goal is to:

Minimize J(…) with  (holding  �xed)

In the move centroid step, our goal is to:

Minimize J(…) with 

With k-means, it is not possible for the cost function to sometimes increase. It should always descend.

Random Initialization
There's one particular recommended method for randomly initializing your cluster centroids.

1. Have K<m. That is, make sure the number of your clusters is less than the number of your training examples.

2. Randomly pick K training examples. (Not mentioned in the lecture, but also be sure the selected examples are unique).

3. Set  equal to these K examples.

K-means can get stuck in local optima. To decrease the chance of this happening, you can run the algorithm on many di�erent random
initializations. In cases where K<10 it is strongly recommended to run a loop of random initializations.

Choosing the Number of Clusters
Choosing K can be quite arbitrary and ambiguous.

The elbow method: plot the cost J and the number of clusters K. The cost function should reduce as we increase the number of clusters, and then
�atten out. Choose K at the point where the cost function starts to �atten out.
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for i = 1 to 100:
   randomly initialize k-means
   run k-means to get 'c' and 'm'
   compute the cost function (distortion) J(c,m)
pick the clustering that gave us the lowest cost
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However, fairly often, the curve is very gradual, so there's no clear elbow.

Note: J will always decrease as K is increased. The one exception is if k-means gets stuck at a bad local optimum.

Another way to choose K is to observe how well k-means performs on a downstream purpose. In other words, you choose K that proves to be
most useful for some goal you're trying to achieve from using these clusters.

Bonus: Discussion of the drawbacks of K-Means
This links to a discussion that shows various situations in which K-means gives totally correct but unexpected results:
http://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means

ML:Dimensionality Reduction
Motivation I: Data Compression

We may want to reduce the dimension of our features if we have a lot of redundant data.

To do this, we find two highly correlated features, plot them, and make a new line that seems to describe both features accurately. We place all the new
features on this single line.

Doing dimensionality reduction will reduce the total data we have to store in computer memory and will speed up our learning algorithm.

Note: in dimensionality reduction, we are reducing our features rather than our number of examples. Our variable m will stay the same size; n, the

number of features each example from  to  carries, will be reduced.

Motivation II: Visualization

It is not easy to visualize data that is more than three dimensions. We can reduce the dimensions of our data to 3 or less in order to plot it.

We need to �nd new features, (and perhaps ) that can e�ectively summarize all the other features.

Example: hundreds of features related to a country's economic system may all be combined into one feature that you call "Economic Activity."

Principal Component Analysis Problem Formulation
The most popular dimensionality reduction algorithm is Principal Component Analysis (PCA)

Problem formulation

Given two features,  and , we want to �nd a single line that e�ectively describes both features at once. We then map our old features onto this
new line to get a new single feature.

The same can be done with three features, where we map them to a plane.

The goal of PCA is to reduce the average of all the distances of every feature to the projection line. This is the projection error.

Reduce from 2d to 1d: �nd a direction (a vector ) onto which to project the data so as to minimize the projection error.

The more general case is as follows:

Reduce from n-dimension to k-dimension: Find k vectors  onto which to project the data so as to minimize the projection error.

If we are converting from 3d to 2d, we will project our data onto two directions (a plane), so k will be 2.

PCA is not linear regression

In linear regression, we are minimizing the squared error from every point to our predictor line. These are vertical distances.

In PCA, we are minimizing the shortest distance, or shortest orthogonal distances, to our data points.

More generally, in linear regression we are taking all our examples in x and applying the parameters in Θ to predict y.

In PCA, we are taking a number of features , and �nding a closest common dataset among them. We aren't trying to predict any
result and we aren't applying any theta weights to the features.

Principal Component Analysis Algorithm
Before we can apply PCA, there is a data pre-processing step we must perform:

Data preprocessing

x(1) x(m)

,z1 z2 z3

x1 x2

∈u(1)
R

n
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Given training set: x(1),x(2),…,x(m)

Preprocess (feature scaling/mean normalization):

Replace each  with 

If different features on different scales (e.g.,  = size of house,  = number of bedrooms), scale features to have comparable range of values.

Above, we �rst subtract the mean of each feature from the original feature. Then we scale all the features 

We can de�ne speci�cally what it means to reduce from 2d to 1d data as follows:

The z values are all real numbers and are the projections of our features onto .

So, PCA has two tasks: �gure out  and also to �nd .

The mathematical proof for the following procedure is complicated and beyond the scope of this course.

1. Compute "covariance matrix"

This can be vectorized in Octave as:

We denote the covariance matrix with a capital sigma (which happens to be the same symbol for summation, confusingly---they represent entirely
di�erent things).

Note that  is an n×1 vector,  is an 1×n vector and X is a m×n matrix (row-wise stored examples). The product of those will be an n×n
matrix, which are the dimensions of Σ.

2. Compute "eigenvectors" of covariance matrix Σ

svd() is the 'singular value decomposition', a built-in Octave function.

What we actually want out of svd() is the 'U' matrix of the Sigma covariance matrix: . U contains , which is exactly what we
want.

3. Take the �rst k columns of the U matrix and compute z

We'll assign the �rst k columns of U to a variable called 'Ureduce'. This will be an n×k matrix. We compute z with:

 will have dimensions k×n while x(i) will have dimensions n×1. The product  will have dimensions k×1.

To summarize, the whole algorithm in octave is roughly:

Reconstruction from Compressed Representation
If we use PCA to compress our data, how can we uncompress our data, or go back to our original number of features?

To go from 1-dimension back to 2d we do: .

We can do this with the equation: .

Note that we can only get approximations of our original data.
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approx Ureduce z(1)

Sigma = (1/m) * X' * X;

[U,S,V] = svd(Sigma);

Sigma = (1/m) * X' * X; % compute the covariance matrix
[U,S,V] = svd(Sigma);   % compute our projected directions
Ureduce = U(:,1:k);     % take the first k directions
Z = X * Ureduce;        % compute the projected data points
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Note: It turns out that the U matrix has the special property that it is a Unitary Matrix. One of the special properties of a Unitary Matrix is:

 where the "*" means "conjugate transpose".

Since we are dealing with real numbers here, this is equivalent to:

 So we could compute the inverse and use that, but it would be a waste of energy and compute cycles.

Choosing the Number of Principal Components
How do we choose k, also called the number of principal components? Recall that k is the dimension we are reducing to.

One way to choose k is by using the following formula:

Given the average squared projection error: 

Also given the total variation in the data: 

Choose k to be the smallest value such that: 

In other words, the squared projection error divided by the total variation should be less than one percent, so that 99% of the variance is
retained.

Algorithm for choosing k

1. Try PCA with k=1,2,…

2. Compute 

3. Check the formula given above that 99% of the variance is retained. If not, go to step one and increase k.

This procedure would actually be horribly ine�cient. In Octave, we will call svd:

Which gives us a matrix S. We can actually check for 99% of retained variance using the S matrix as follows:

Advice for Applying PCA

The most common use of PCA is to speed up supervised learning.

Given a training set with a large number of features (e.g.  ) we can use PCA to reduce the number of features in each

example of the training set (e.g. ).

Note that we should de�ne the PCA reduction from  to  only on the training set and not on the cross-validation or test sets. You can apply
the mapping z(i) to your cross-validation and test sets after it is de�ned on the training set.

Applications

Compressions

Reduce space of data

Speed up algorithm

Visualization of data

Choose k = 2 or k = 3

Bad use of PCA: trying to prevent over�tting. We might think that reducing the features with PCA would be an e�ective way to address over�tting.
It might work, but is not recommended because it does not consider the values of our results y. Using just regularization will be at least as e�ective.

Don't assume you need to do PCA. Try your full machine learning algorithm without PCA �rst. Then use PCA if you �nd that you need it.
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Week 9 Lecture Notes

ML:Anomaly Detection

Problem Motivation
Just like in other learning problems, we are given a dataset .

We are then given a new example, , and we want to know whether this new example is abnormal/anomalous.

We de�ne a "model" p(x) that tells us the probability the example is not anomalous. We also use a threshold ϵ (epsilon) as a
dividing line so we can say which examples are anomalous and which are not.

A very common application of anomaly detection is detecting fraud:

 features of user i's activities

Model p(x) from the data.

Identify unusual users by checking which have p(x)<ϵ.

If our anomaly detector is �agging too many anomalous examples, then we need to decrease our threshold ϵ

Gaussian Distribution
The Gaussian Distribution is a familiar bell-shaped curve that can be described by a function 

Let x∈ℝ. If the probability distribution of x is Gaussian with mean μ, variance , then:

The little ∼ or 'tilde' can be read as "distributed as."

The Gaussian Distribution is parameterized by a mean and a variance.

Mu, or μ, describes the center of the curve, called the mean. The width of the curve is described by sigma, or σ, called the
standard deviation.

The full function is as follows:

We can estimate the parameter μ from a given dataset by simply taking the average of all the examples:

We can estimate the other parameter, , with our familiar squared error formula:

Algorithm
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Algorithm
Given a training set of examples,  where each example is a vector, .

In statistics, this is called an "independence assumption" on the values of the features inside training example x.

More compactly, the above expression can be written as follows:

The algorithm

Choose features  that you think might be indicative of anomalous examples.

Fit parameters 

Calculate 

Calculate 

Given a new example x, compute p(x):

Anomaly if p(x)<ϵ

A vectorized version of the calculation for μ is . You can vectorize  similarly.

Developing and Evaluating an Anomaly Detection System
To evaluate our learning algorithm, we take some labeled data, categorized into anomalous and non-anomalous examples ( y = 0
if normal, y = 1 if anomalous).

Among that data, take a large proportion of good, non-anomalous data for the training set on which to train p(x).

Then, take a smaller proportion of mixed anomalous and non-anomalous examples (you will usually have many more non-
anomalous examples) for your cross-validation and test sets.

For example, we may have a set where 0.2% of the data is anomalous. We take 60% of those examples, all of which are good (y=0)
for the training set. We then take 20% of the examples for the cross-validation set (with 0.1% of the anomalous examples) and
another 20% from the test set (with another 0.1% of the anomalous).

In other words, we split the data 60/20/20 training/CV/test and then split the anomalous examples 50/50 between the CV and test
sets.

Algorithm evaluation:

Fit model p(x) on training set 

On a cross validation/test example x, predict:

If p(x) < ϵ (anomaly), then y=1
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If p(x) ≥ ϵ (normal), then y=0

Possible evaluation metrics (see "Machine Learning System Design" section):

True positive, false positive, false negative, true negative.

Precision/recall

 score

Note that we use the cross-validation set to choose parameter ϵ

Anomaly Detection vs. Supervised Learning
When do we use anomaly detection and when do we use supervised learning?

Use anomaly detection when...

We have a very small number of positive examples (y=1 ... 0-20 examples is common) and a large number of negative (y=0)
examples.

We have many different "types" of anomalies and it is hard for any algorithm to learn from positive examples what the anomalies look
like; future anomalies may look nothing like any of the anomalous examples we've seen so far.

Use supervised learning when...

We have a large number of both positive and negative examples. In other words, the training set is more evenly divided into classes.

We have enough positive examples for the algorithm to get a sense of what new positives examples look like. The future positive
examples are likely similar to the ones in the training set.

Choosing What Features to Use
The features will greatly a�ect how well your anomaly detection algorithm works.

We can check that our features are gaussian by plotting a histogram of our data and checking for the bell-shaped curve.

Some transforms we can try on an example feature x that does not have the bell-shaped curve are:

log(x)

log(x+1)

log(x+c) for some constant

We can play with each of these to try and achieve the gaussian shape in our data.

There is an error analysis procedure for anomaly detection that is very similar to the one in supervised learning.

Our goal is for p(x) to be large for normal examples and small for anomalous examples.

One common problem is when p(x) is similar for both types of examples. In this case, you need to examine the anomalous
examples that are giving high probability in detail and try to �gure out new features that will better distinguish the data.

In general, choose features that might take on unusually large or small values in the event of an anomaly.

Multivariate Gaussian Distribution (Optional)
The multivariate gaussian distribution is an extension of anomaly detection and may (or may not) catch more anomalies.

F1

x√

x1/3

( ), ( ),… Σ ∈ n×n



Instead of modeling  separately, we will model p(x) all in one go. Our parameters will be:  and 

The important e�ect is that we can model oblong gaussian contours, allowing us to better �t data that might not �t into the
normal circular contours.

Varying Σ changes the shape, width, and orientation of the contours. Changing μ will move the center of the distribution.

Check also:

The Multivariate Gaussian Distribution http://cs229.stanford.edu/section/gaussians.pdf Chuong B. Do, October 10, 2008.

Anomaly Detection using the Multivariate Gaussian
Distribution (Optional)
When doing anomaly detection with multivariate gaussian distribution, we compute μ and Σ normally. We then compute p(x)
using the new formula in the previous section and �ag an anomaly if p(x) < ϵ.

The original model for p(x) corresponds to a multivariate Gaussian where the contours of  are axis-aligned.

The multivariate Gaussian model can automatically capture correlations between di�erent features of x.

However, the original model maintains some advantages: it is computationally cheaper (no matrix to invert, which is costly for
large number of features) and it performs well even with small training set size (in multivariate Gaussian model, it should be
greater than the number of features for Σ to be invertible).

ML:Recommender Systems

Problem Formulation
Recommendation is currently a very popular application of machine learning.

Say we are trying to recommend movies to customers. We can use the following de�nitions

 number of users

 number of movies

 if user j has rated movie i

 rating given by user j to movie i (defined only if r(i,j)=1)

Content Based Recommendations
We can introduce two features,  and  which represents how much romance or how much action a movie may have (on a
scale of 0−1).

One approach is that we could do linear regression for every single user. For each user j, learn a parameter . Predict

user j as rating movie i with  stars.

 parameter vector for user j

 feature vector for movie i

For user j, movie i, predicted rating: 
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 number of movies rated by user j

To learn , we do the following

This is our familiar linear regression. The base of the �rst summation is choosing all i such that .

To get the parameters for all our users, we do the following:

We can apply our linear regression gradient descent update using the above cost function.

The only real di�erence is that we eliminate the constant .

Collaborative Filtering
It can be very di�cult to �nd features such as "amount of romance" or "amount of action" in a movie. To �gure this out, we can
use feature �nders.

We can let the users tell us how much they like the di�erent genres, providing their parameter vector immediately for us.

To infer the features from given parameters, we use the squared error function with regularization over all the users:

You can also randomly guess the values for theta to guess the features repeatedly. You will actually converge to a good set of
features.

Collaborative Filtering Algorithm
To speed things up, we can simultaneously minimize our features and our parameters:

It looks very complicated, but we've only combined the cost function for theta and the cost function for x.

Because the algorithm can learn them itself, the bias units where x0=1 have been removed, therefore x∈ℝn and θ∈ℝn.

These are the steps in the algorithm:

1. Initialize  to small random values. This serves to break symmetry and ensures that the algorithm
learns features  that are different from each other.

2. Minimize  using gradient descent (or an advanced optimization algorithm).E.g. for every 

:

3. For a user with parameters θ and a movie with (learned) features x, predict a star rating of .

Vectorization: Low Rank Matrix Factorization
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Vectorization: Low Rank Matrix Factorization
Given matrices X (each row containing features of a particular movie) and Θ (each row containing the weights for those features

for a given user), then the full matrix Y of all predicted ratings of all movies by all users is given simply by: .

Predicting how similar two movies i and j are can be done using the distance between their respective feature vectors x.

Speci�cally, we are looking for a small value of .

Implementation Detail: Mean Normalization
If the ranking system for movies is used from the previous lectures, then new users (who have watched no movies), will be
assigned new movies incorrectly. Speci�cally, they will be assigned θ with all components equal to zero due to the minimization of
the regularization term. That is, we assume that the new user will rank all movies 0, which does not seem intuitively correct.

We rectify this problem by normalizing the data relative to the mean. First, we use a matrix Y to store the data from previous
ratings, where the ith row of Y is the ratings for the ith movie and the jth column corresponds to the ratings for the jth user.

We can now de�ne a vector

such that

Which is e�ectively the mean of the previous ratings for the ith movie (where only movies that have been watched by users are
counted). We now can normalize the data by subtracting u, the mean rating, from the actual ratings for each user (column in
matrix Y):

As an example, consider the following matrix Y and mean ratings μ:

The resulting Y′ vector is:

Now we must slightly modify the linear regression prediction to include the mean normalization term:

Now, for a new user, the initial predicted values will be equal to the μ term instead of simply being initialized to zero, which is
more accurate.

Y = XΘT
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Week 10 Lecture Notes

Learning with Large Datasets
We mainly bene�t from a very large dataset when our algorithm has high variance when m is small.
Recall that if our algorithm has high bias, more data will not have any bene�t.

Datasets can often approach such sizes as m = 100,000,000. In this case, our gradient descent step will
have to make a summation over all one hundred million examples. We will want to try to avoid this --
the approaches for doing so are described below.

Stochastic Gradient Descent
Stochastic gradient descent is an alternative to classic (or batch) gradient descent and is more e�cient
and scalable to large data sets.

Stochastic gradient descent is written out in a di�erent but similar way:

The only di�erence in the above cost function is the elimination of the m constant within .

 is now just the average of the cost applied to all of our training examples.

The algorithm is as follows

1. Randomly 'shuffle' the dataset

2. For 

This algorithm will only try to �t one training example at a time. This way we can make progress in
gradient descent without having to scan all m training examples �rst. Stochastic gradient descent will be
unlikely to converge at the global minimum and will instead wander around it randomly, but usually
yields a result that is close enough. Stochastic gradient descent will usually take 1-10 passes through
your data set to get near the global minimum.

Mini-Batch Gradient Descent

cost(θ, ( , )) = ( ( ) −x(i) y(i) 1

2
hθ x(i) y(i))2

1

2

(θ) = cost(θ, ( , ))Jtrain

1

m
∑
i=1

m

x(i) y(i)

Jtrain

i = 1…m

:= − α( ( ) − ) ⋅Θj Θj hΘ x(i) y(i) x
(i)
j



Mini-Batch Gradient Descent

Mini-batch gradient descent can sometimes be even faster than stochastic gradient descent. Instead of
using all m examples as in batch gradient descent, and instead of using only 1 example as in stochastic
gradient descent, we will use some in-between number of examples b.

Typical values for b range from 2-100 or so.

For example, with b=10 and m=1000:

Repeat:

For 

We're simply summing over ten examples at a time. The advantage of computing more than one
example at a time is that we can use vectorized implementations over the b examples.

Stochastic Gradient Descent Convergence
How do we choose the learning rate α for stochastic gradient descent? Also, how do we debug
stochastic gradient descent to make sure it is getting as close as possible to the global optimum?

One strategy is to plot the average cost of the hypothesis applied to every 1000 or so training examples.
We can compute and save these costs during the gradient descent iterations.

With a smaller learning rate, it is possible that you may get a slightly better solution with stochastic
gradient descent. That is because stochastic gradient descent will oscillate and jump around the global
minimum, and it will make smaller random jumps with a smaller learning rate.

If you increase the number of examples you average over to plot the performance of your algorithm,
the plot's line will become smoother.

With a very small number of examples for the average, the line will be too noisy and it will be di�cult to
�nd the trend.

One strategy for trying to actually converge at the global minimum is to slowly decrease α over time.

For example 

However, this is not often done because people don't want to have to �ddle with even more
parameters.

Online Learning

i = 1,11,21,31,…,991

:= − α ( ( ) − )θj θj

1

10
∑
k=i

i+9

hθ x(k) y(k) x
(k)
j

α =
const1

iterationNumber + const2



With a continuous stream of users to a website, we can run an endless loop that gets (x,y), where we
collect some user actions for the features in x to predict some behavior y.

You can update θ for each individual (x,y) pair as you collect them. This way, you can adapt to new pools
of users, since you are continuously updating theta.

Map Reduce and Data Parallelism
We can divide up batch gradient descent and dispatch the cost function for a subset of the data to
many di�erent machines so that we can train our algorithm in parallel.

You can split your training set into z subsets corresponding to the number of machines you have. On

each of those machines calculate , where we've split the data starting at p

and ending at q.

MapReduce will take all these dispatched (or 'mapped') jobs and 'reduce' them by calculating:

For all .

This is simply taking the computed cost from all the machines, calculating their average, multiplying by
the learning rate, and updating theta.

Your learning algorithm is MapReduceable if it can be expressed as computing sums of functions over
the training set. Linear regression and logistic regression are easily parallelizable.

For neural networks, you can compute forward propagation and back propagation on subsets of your
data on many machines. Those machines can report their derivatives back to a 'master' server that will
combine them.
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